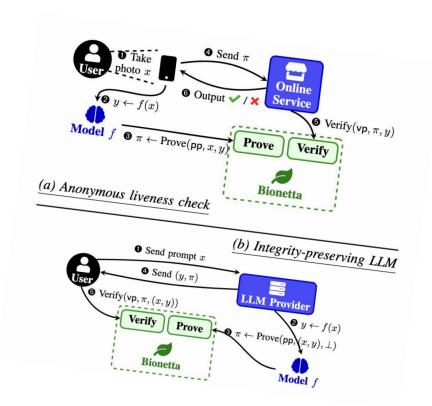
Zero-Knowledge Proofs

A Practical Introduction

Dmytro Zakharov

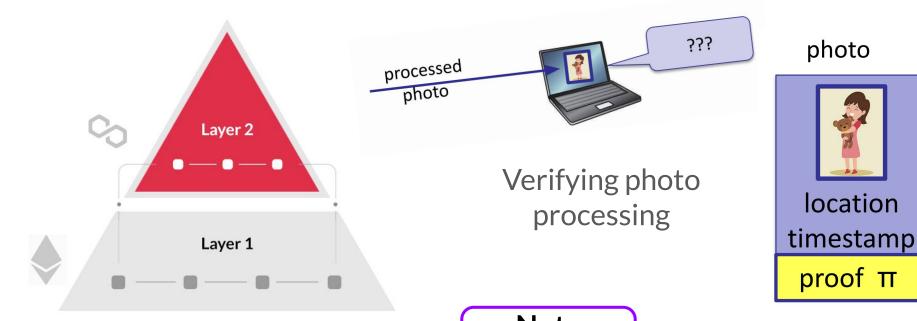
R&D Cryptography Engineer @ <u>Distributed Lab</u>
Privacy-Preserving ML Lead @ <u>Rarimo</u>
MSc Student in Mathematics @ <u>KSE</u>
zamdimon.github.io

Reason 1. Many applications!



Voting for the next President anonymously!

Ensuring LLM integrity

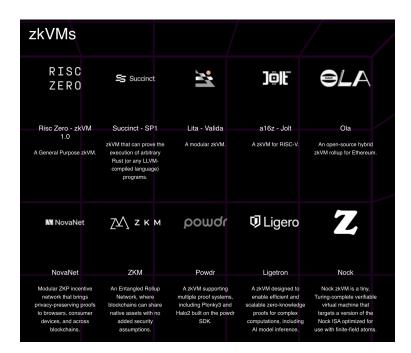


Scaling Blockchain infrastructure

Note

We will consider how this is mathematically formulated!

Reason 2. Immense commercial interest!





See https://zkhack.dev/the-map-of-zk/

Reason 3. This is where advanced mathematics is applied!

$$l(X) = (\mathbf{a}_L - z \cdot \mathbf{1}^{n \cdot m}) + \mathbf{s}_L \cdot X \in \mathbb{Z}_p^{n \cdot m}[X]$$

$$\mathbf{r}(X) = \mathbf{v}^{n \cdot m} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{n \cdot m} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot \left(\mathbf{0}^{(j-1) \cdot n} \parallel \mathbf{2}^n \parallel \mathbf{0}^{(m-j) \cdot n}\right) \in \mathbb{Z}_p^{n \cdot m}$$

$$(71)$$

In the computation of τ_x , we need to adjust for the randomness of each commitment V_j , so that $\tau_x = \tau_1 \cdot x + \tau_2 \cdot x^2 + \sum_{j=1}^m z^{1+j} \cdot \gamma_j$. Further, $\delta(y, z)$ is updated to incorporate more cross terms.

$$\delta(y,z) = (z - z^2) \cdot \langle \mathbf{1}^{n \cdot m}, \mathbf{y}^{n \cdot m} \rangle - \sum_{j=1}^{m} z^{j+2} \cdot \langle \mathbf{1}^{n}, \mathbf{2}^{n} \rangle$$

The verification check (65) needs to be updated to include all the ${\cal V}_j$ commitments.

$$g^{\hat{t}}h^{ au_x}\stackrel{?}{=} g^{\delta(y,z)}\cdot \mathbf{V}^{z^2\cdot \mathbf{z}^m}\cdot T_1^x\cdot T_2^{x^2}$$

Finally, we change the definition of P (66) such that it is a commitment to the new ${\bf r}.$

$$P = AS^{x} \cdot \mathbf{g}^{-z} \cdot \mathbf{h}'^{z \cdot \mathbf{y}^{n \cdot m}} \prod_{j=1}^{m} \mathbf{h}'^{z^{j+1} \cdot 2^{n}}_{[(j-1) \cdot n : j \cdot n - 1]}$$

random public input

5. Honest-Verifier Zero-Knowledge: Π is zero-knowledge if there exists a PPT simulator every PPT adversary A:

$$\begin{split} \left| \Pr \left[\begin{array}{l} \langle \mathcal{P}(\mathsf{pp}, \mathbb{x}, \mathbb{w}), \mathcal{V}(\mathsf{vp}, \mathbb{x}) = 1 \\ & \wedge (i, \mathbb{x}, \mathbb{w}) \in \mathcal{R} \end{array} \right. &: \begin{array}{l} \mathsf{gp} \leftarrow \mathsf{Setup}(1^{\lambda}) \\ & (i, \mathbb{x}, \mathbb{w}) \leftarrow \mathcal{A}(\mathsf{gp}) \\ & (\mathsf{pp}, \mathsf{vp}) \leftarrow \mathcal{I}(\mathsf{gp}, i) \end{array} \right] - \\ \geq \Pr \left[\begin{array}{l} \langle \mathcal{S}(\sigma, \mathsf{pp}, \mathbb{x}), \mathcal{V}(\mathsf{vp}, \mathbb{x}) \rangle = 1 \\ & \wedge (i, \mathbb{x}, \mathbb{w}) \in \mathcal{R} \end{array} \right. &: \begin{array}{l} (\mathsf{gp}, \sigma) \leftarrow \mathcal{S}(1^{\lambda}) \\ & (i, \mathbb{x}, \mathbb{w}) \leftarrow \mathcal{A}(\mathsf{gp}) \\ & (\mathsf{pp}, \mathsf{vp}) \leftarrow \mathcal{I}(\mathsf{gp}, i) \end{array} \right] \right| \leq \mathsf{negl}(\lambda) \end{split}$$

$$|(X) = (\mathbf{a}_L - z \cdot \mathbf{1}^{nm}) + \mathbf{s}_L \cdot X \in \mathbb{Z}_p^{nm}[X]$$

$$r(X) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{1+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{j+j} \cdot (\mathbf{0}^{(j-1) \cdot n} \parallel 2^n \parallel \mathbf{0}^{(m-j) \cdot n}) \in \mathbb{Z}_p^{nm}}$$

$$|(T) = \mathbf{y}^{nm} \circ (\mathbf{a}_R + z \cdot \mathbf{1}^{nm} + \mathbf{s}_R \cdot X) + \sum_{j=1}^m z^{j+j} \cdot (\mathbf{a}_R \cdot \mathbf{1}^{nm} + \mathbf{a}_R \cdot \mathbf{1}^{nm}) = \mathbf{1}^{nm} \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm}) = \mathbf{1}^{nm} \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} + \mathbf{1}^{nm} \cdot \mathbf{1}^{nm} \cdot \mathbf{1}$$

Lemma 4.9. For every function $f: \mathcal{L} \to \mathbb{F}$, degree parameter $d \in \mathbb{N}$, folding parameter $k \in \mathbb{N}$, and distance parameter $\delta \in (0, \min\{\Delta(f, \mathsf{RS}[\mathbb{F}, \mathcal{L}, d]), 1 - \mathsf{B}^{\bullet}(\rho)\})$, letting $\rho := d/|\mathcal{L}|$, $\Pr_{r^{\text{fold}} \leftarrow \mathbb{F}} \left[\Delta(\mathsf{Fold}(f, k, r^{\text{fold}}), \mathsf{RS}[\mathbb{F}, \mathcal{L}^k, d/k]) \leq \delta \right] \leq \mathsf{err}^*(d/k, \rho, \delta, k) \; .$

Above, B* and err* are the proximity bound and error (respectively) described in Section 4.1.

Production that
$$\Pr_{r^{\text{fool}} \leftarrow \mathbb{F}} \left[\Delta(\text{Fold}(f, k, r^{\text{fool}}), \text{RS}[\mathbb{F}, \mathcal{L}^k, d/k]) \le \delta \right] > \text{err}^*(d/k, \rho, \delta, k)$$
 be defined from f as in Definition 4.8, define

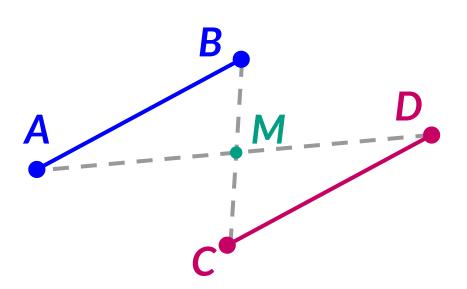
Letting \hat{p}_x be defined from f as in Definition 4.8, define c_0, \dots, c_{k-1} where $c_j : \mathcal{L}^k \to \mathbb{F}$ is the function where $c_j(x)$ is the j-th coefficient of \hat{p}_x (i.e., so that $\hat{p}_x(X) \equiv \sum_{j=0}^{k-1} c_j(x) \cdot X^j$ for every

Fold
$$(f,k,lpha)(x)=\hat{p}_x(lpha)=\sum_{j=0}^{k-1}c_j(x)\cdotlpha^j$$
 .

Introduction

Classical Proofs (in high school geometry)

Problem: Suppose M is the midpoint of AD and BC. Prove that AB and CD are parallel.



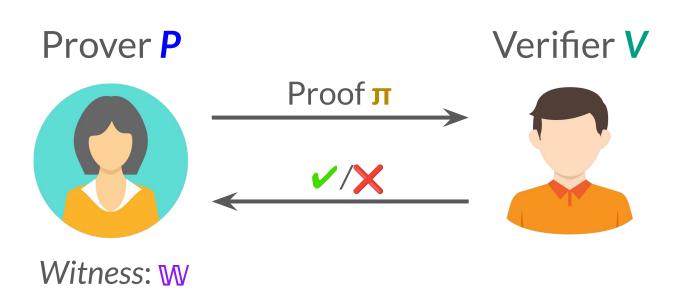
- → Prover: you on the test.
- → Verifier: your teacher.
- → Public Statement: theorem.
- → Proof (and witness):
 sequence of axioms and
 logical facts that proves the
 given theorem.

Question

Why and how is this concept generalized to crypto systems?

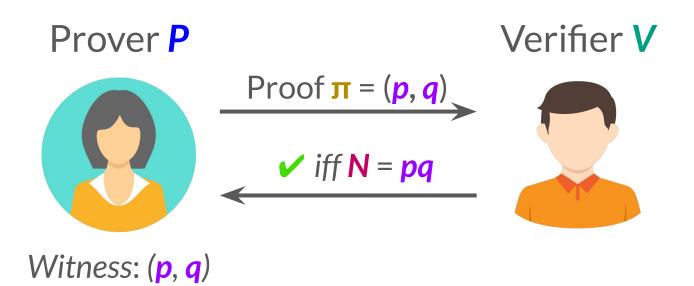
General Setup

<u>Claim</u>: X



Example: Product of two primes

Claim: N = pq



Some Definitions

Definition

Relation \mathcal{R} is **effective** if $(x, w) \in \mathcal{R}$ can be verified in polynomial time. More specifically, in poly(|x|).

The language of \mathcal{R} is defined as $\mathcal{L}_{\mathcal{R}} = \{x: \exists w \text{ s.t. } (x, w)\}$

Examples

- Suppose $(N, (p, q)) \in \mathcal{R}$ iff N = pq. This is an effective relation since computing pq is polynomially fast.
- → Fix hash function \mathcal{H} . Suppose $(d, m) \in \mathcal{R}$ iff $d = \mathcal{H}$ (m). This is trivially an effective relation.

Some Definitions

 $\exists \mathbf{w} : \mathcal{R}(\mathbf{x}, \mathbf{w}) = 1$

Effective Relation.

Encodes a logic of the statement to be proven.

Public statement. Public part of the statement (e.g., public key / output of function).

Witness. Secret data which is not computable from the public statement.

Example

Take SHA256 preimage relation. Given, say,

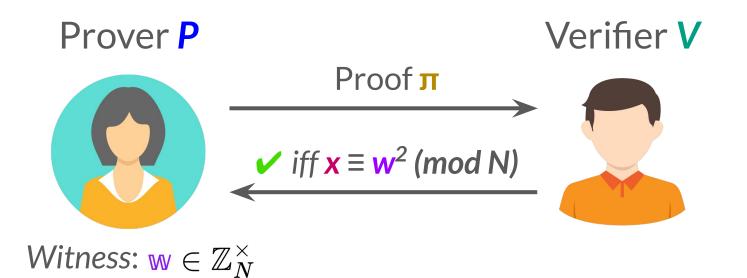
X=0x163004120d6e29aacc023568b6d8ca5f9dd3e09beeeb1e359fcf671de5466bf3 you cannot determine w such that SHA256(w) = x.

Turns out that in this particular case, w = "KSE"!

This way, proving "I know hash preimage of x" totally makes sense!

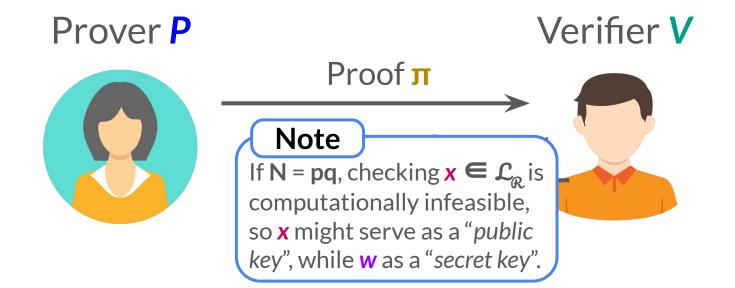
Relation: $(\mathbf{x}, \mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \pmod{N}$

 $\textit{Language:} \quad \mathcal{L}_{\mathcal{R}} = \{ \texttt{x} \in \mathbb{Z}_N^{\times} : \exists \texttt{w} \in \mathbb{Z}_N^{\times} \text{ s.t. } \texttt{x} \equiv \texttt{w}^2 \text{ } (\text{mod } N) \}$



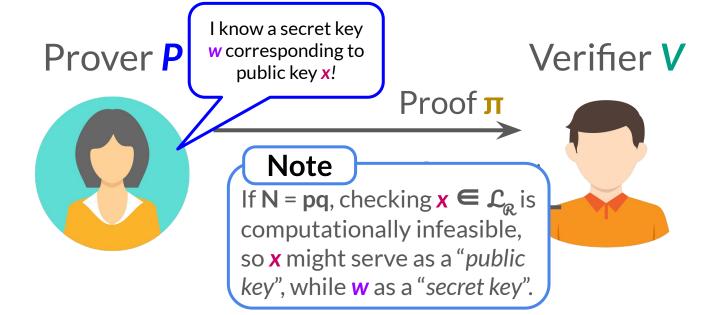
Relation: $(\mathbf{x}, \mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \pmod{N}$

 $\textbf{\textit{Language:}} \quad \mathcal{L}_{\mathcal{R}} = \{ \texttt{x} \in \mathbb{Z}_N^{\times} : \exists \texttt{w} \in \mathbb{Z}_N^{\times} \text{ s.t. } \texttt{x} \equiv \texttt{w}^2 \text{ } (\text{mod } N) \}$



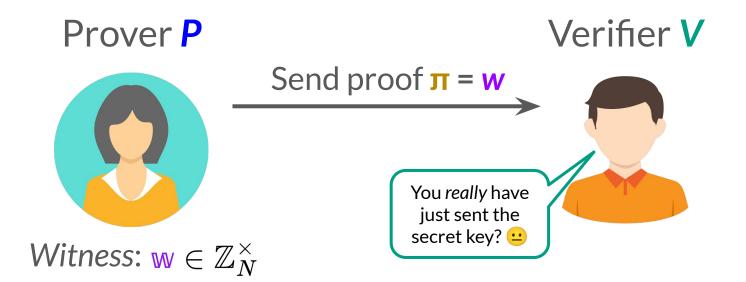
```
Relation: (\mathbf{x}, \mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \pmod{N}
```

 $\textbf{\textit{Language:}} \quad \mathcal{L}_{\mathcal{R}} = \{ \texttt{x} \in \mathbb{Z}_N^{\times} : \exists \texttt{w} \in \mathbb{Z}_N^{\times} \text{ s.t. } \texttt{x} \equiv \texttt{w}^2 \text{ } (\text{mod } N) \}$



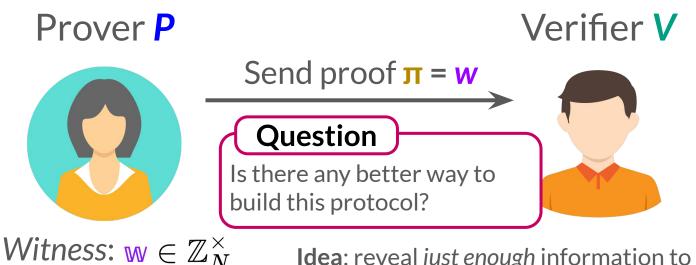
Relation: $(\mathbf{x}, \mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \pmod{N}$

 $\textit{Language} \colon \;\; \mathcal{L}_{\mathcal{R}} = \{ {\color{red}\mathbf{x}} \in \mathbb{Z}_N^\times : \exists {\color{red}\mathbf{w}} \in \mathbb{Z}_N^\times \text{ s.t. } {\color{red}\mathbf{x}} \equiv {\color{red}\mathbf{w}}^2 \; (\bmod \; N) \}$



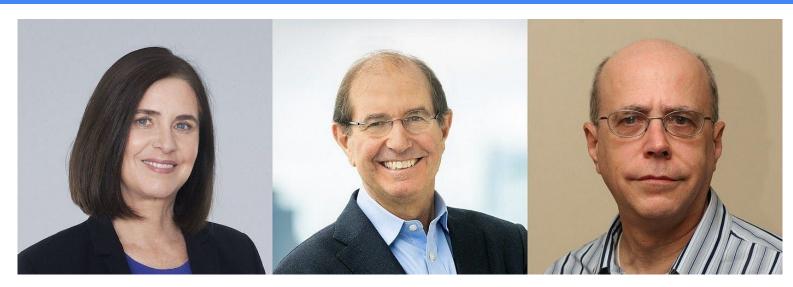
Relation: $(\mathbf{x}, \mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \pmod{N}$

Language: $\mathcal{L}_{\mathcal{R}} = \{ \mathbf{x} \in \mathbb{Z}_N^{\times} : \exists \mathbf{w} \in \mathbb{Z}_N^{\times} \text{ s.t. } \mathbf{x} \equiv \mathbf{w}^2 \pmod{N} \}$



Idea: reveal just enough information to convince **V**!

Interactive Protocols



Goldwasser, Micali, and Rackoff: inventors of ZK (~1985)

Interactive Protocol

<u>Claim</u>: X

Notation: $|\mathsf{view}_{\mathcal{V}}(\mathcal{P},\mathcal{V})[\mathbf{x}] = (\mathbf{x},c_1,q_1,\ldots,c_n,q_n)$

Interactive Protocol: Formal Definition

Notation: $\langle P, V \rangle(x)$ – interaction between P and V on statement x

Definition

A pair of algorithms (P, V) is an interactive proof (IP) with security parameter λ for language \mathcal{L}_{R} if V runs in polynomial time & the following two properties holds:

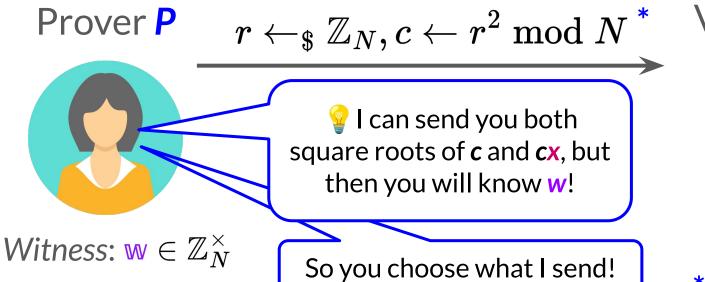
• Completeness: For any $x \in \mathcal{L}_{\mathcal{R}}$,

$$Pr[\langle P, V \rangle(x) = accept] = 1.$$

• Soundness: For any $x \notin \mathcal{L}_{\mathcal{R}}$, and any P^* ,

$$Pr[\langle P^*, V \rangle(x) = accept] \leq negl(\lambda).$$

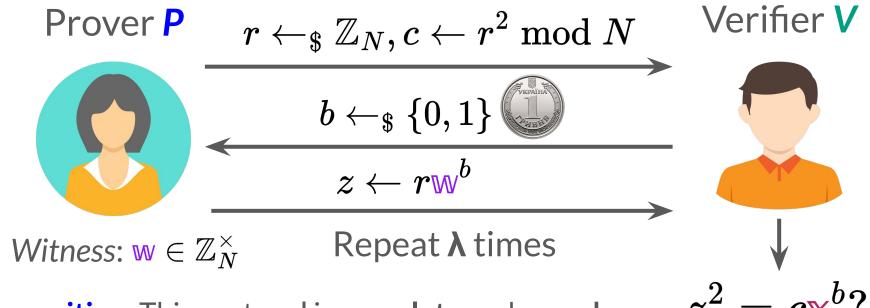
Claim: $\exists w : x \equiv w^2 \pmod{N}$



Verifier V

* $\leftarrow_{\$}$ = sample uniformly

Claim: $\exists w : x \equiv w^2 \pmod{N}$



Proposition. This protocol is **complete** and **sound**.

Proof of Completeness and Soundness

Proof.

Completeness. If the prover **P** is honest, we have:

$$z^2=(r{ t w}^b)^2=r^2({ t w}^2)^b=c{ t x}^b$$

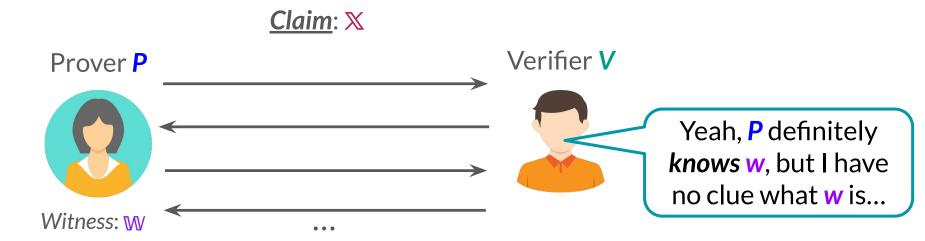
Soundness. If the prover P^* is dishonest with $x \notin \mathcal{L}_{\mathcal{R}}$, there are two possible cases:

- 1. $c \notin \mathcal{L}_{\mathcal{R}}$. Then if **V** outputs b = 0, P^* cannot produce the valid corresponding **z**, thus he loses.
- 2. $c \in \mathcal{L}_{\mathcal{R}}$. Then if V outputs b = 1, P^* similarly loses. Thus, P^* cheats with probability at most 1/2.

Zero-Knowledge (Finally!)

$$Pr[\langle P^*, V \rangle(x) = accept after \lambda rounds] \leq ?$$

What is also nice about this protocol is that it is additionally zero-knowledge and argument of knowledge!



Zero-Knowledge (Finally!)

So what is **zero-knowledge**? **Informally**: $view_V(P, V)[x]$ does not reveal any information about the underlying witness **w**. Formally:

Definition

An interactive protocol (P, V) is (honest-verifier) **zero-knowledge** if there exists a poly-time simulator **Sim** such that for any valid statement $X \subseteq \mathcal{L}_{\varrho}$:

$$\text{view}_{\mathbf{V}}(\mathbf{P}, \mathbf{V})[\mathbf{x}] \approx \text{Sim}(\mathbf{x}, \mathbf{1}^{\lambda})$$

computational indistinguishability

Argument of Knowledge

So what is **argument of knowledge?**

Idea: proving that $x \in \mathcal{L}_{\mathcal{R}}$ is not enough! P must know w!

Example

Let G be a cyclic group of prime order q generated by some element $g \in G$. Define the relation \mathcal{R} over $G \times Z_q$ as follows: $\mathcal{R}(h, \alpha) = 1$ iff $h = g^{\alpha}$. Then, $\mathcal{L}_{\mathcal{R}} = G$! So proving that $h \in \mathcal{L}_{\mathcal{R}}$ is pointless.

(almost) Formally: exists extractor E^P that, given P as an oracle, for any $X \in \mathcal{L}_{\mathcal{R}}$, outputs witness W (s.t. $\mathcal{R}(X,W) = 1$) in poly-time.

Summary

Proposition. IP for Quadratic Residues is zero-knowledge and argument of knowledge.

We omit the proof (and will come back if we have time).

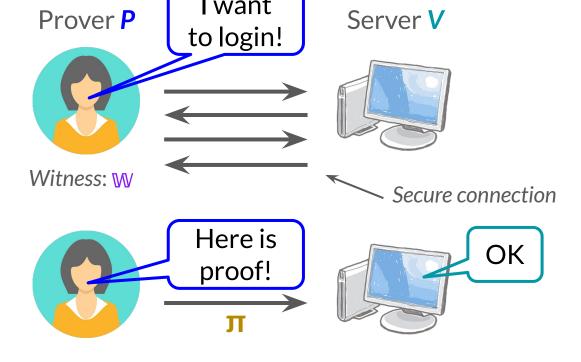
- Summary: Specified IP Π_{QR} has the following properties: $\rightarrow \Pi_{QR}$ is complete: valid statement is always accepted; $\rightarrow \Pi_{QR}$ is sound: invalid statement is impossible to prove; $\rightarrow \Pi_{QR}$ is zero-knowledge: V does not get anything about w; $\rightarrow \Pi_{QR}$ is argument of knowledge: P knows square root of x.

Non-Interactiveness

Suppose we want to deploy authentication based on Π_{QR} ...

With *interactive* protocol we have:

Instead, we want the following:



Non-Interactiveness

Motivation

 Π_{QR} is **public-coin** (meaning, **V** only sends random challenges). It seems like an overkill to require connection just to receive challenges!

Idea. Let P generate the whole transcript on its own:

 $\pi := \text{view}_{V^*}(P, V^*)[x]$ (where challenges of V^* are sampled by P)

 \bigcirc Problem. How can V be sure that P generated all coins fairly?

Fiat-Shamir Transformation

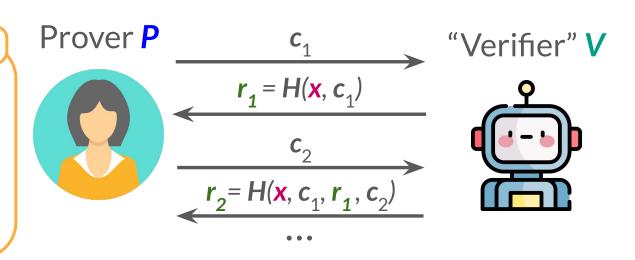
Theorem

(almost) Any constant-round public-coin IP can be made non-interactive argument of knowledge (NARK).

Suppose current transcript (view) is **T**. Set next randomness **r** as

$$r = H(T)$$

for random oracle H.



By applying Fiat-Shamir transformation to Π_{QR} (with certain subtleties), we have constructed the first zk-NARK for

$$(\mathbf{x},\mathbf{w}) \in \mathcal{R} \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^2 \; (\mathrm{mod} \; N)$$

Using very similar idea, we can construct NARKs for:

Knowledge of root:
$$(\mathbf{x},\mathbf{w}) \in \mathcal{R} \subseteq (\mathbb{Z}_N^{\times})^2 \Leftrightarrow \mathbf{x} \equiv \mathbf{w}^r \pmod{N}$$

Schnorr IP: $(h, \alpha) \in \mathcal{R} = \mathbb{Z}_q \times \mathbb{G} \Leftrightarrow h = g^{\alpha}$

Problems (again)

But what about...

$$(x, w) \in \mathcal{R} \Leftrightarrow x = \mathcal{H}(w), \,\, \mathcal{H} \,\, \text{is a hash function}$$

Turns out that we can effectively prove this relation by:

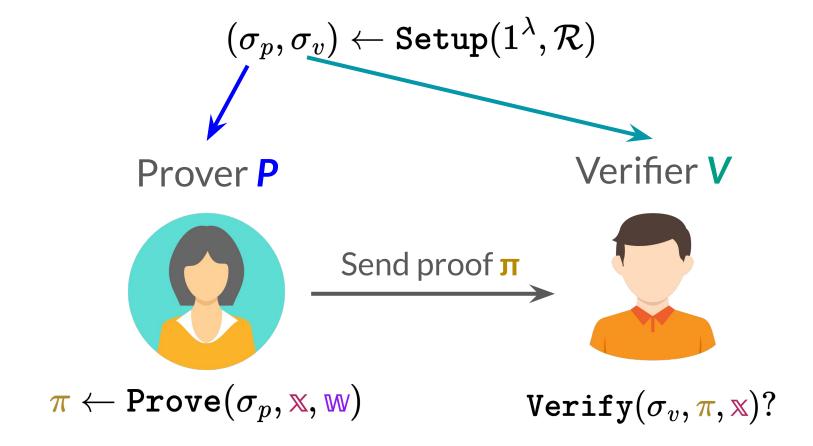
- 1. Implementing **H** as an arithmetic circuit.
- 2. Building zk-SNARK over arithmetic circuits.

Note

This is well beyond the scope of this talk, but we will give a superficial overview nonetheless!

zk-SNARK

Preprocessing NARK



SNARK

Succinct Non-Interactive Argument of Knowledge

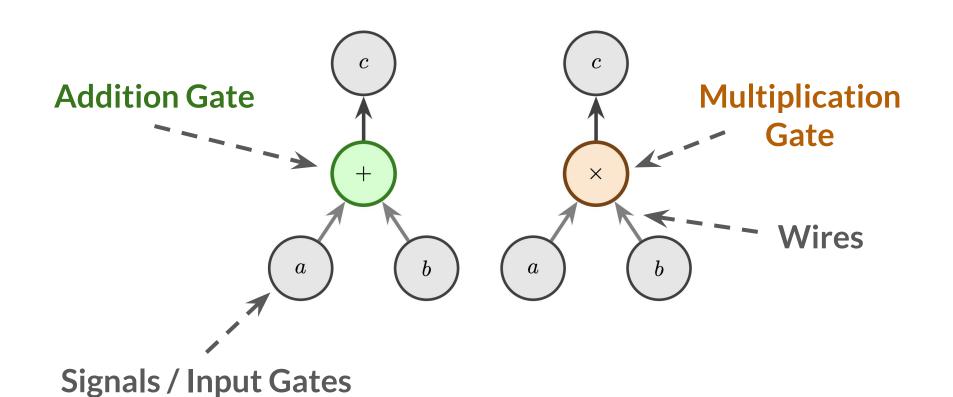
Definition

Suppose the "size" of a relation is **|C|**. (*strong*) **SNARK** is a NARK with **logarithmic** verifier and proof size:

$$len(\pi) = O_{\lambda}(\log |C|), time(V) = O_{\lambda}(|x|, \log |C|)$$

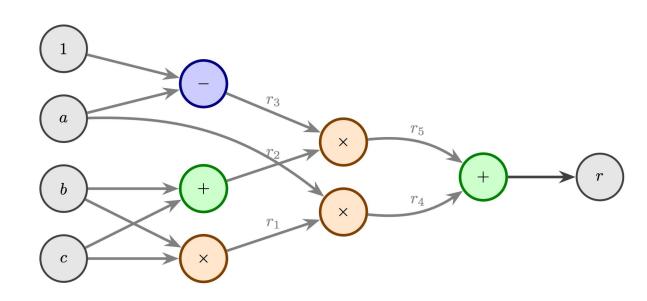
Note. SNARK is not necessarily ZK! If that is the case, the SNARK is naturally called the **zk-SNARK**.

How to measure size? Arithmetic Circuits



How to measure size? Arithmetic Circuits

Connect gates and wires to get an arithmetic circuit C(x, w)



Fact. Any NP relation's verifier can be implemented using some arithmetical circuit \boldsymbol{C} over finite field \boldsymbol{F}_p (and \boldsymbol{F}_2 in particular). Relation size = $|\boldsymbol{C}|$ = # of gates in \boldsymbol{C} .

How Circuits are written in practice

What do you think this program computes? (written in <u>Circom</u>)

```
template ??? () {
    signal input in:
    signal output out;
    signal inv;
    inv <-- in != 0 ? 1/in : 0;
    out <== -in * inv + 1;
    in * out === 0;
```

How Circuits are written in practice

Obviously, checking whether the element is 0!:)

```
template IsZero() {
    signal input in;
    signal output out;
    signal inv;
    inv <-- in != 0 ? 1/in : 0;
    out <== -in * inv + 1;
    in * out === 0;
```

Key Idea: it is not a language of execution, but verification!

Why writing circuits is weird?

- Operator === imposes constraint.
- Operator == checks equality of constant variables.
- Operator < - assigns the value to variable off-circuit.
- Only addition/subtraction/multiplication are allowed.
- No comparison operators.
- Only multiplication of two variables is allowed.
- No variable-sized loops!
- All variables are finite field elements.
- No classes, generics, interfaces, or any syntax sugar!

...and if you mess something up, your system might be completely insecure!

The Trivial SNARK is not SNARK

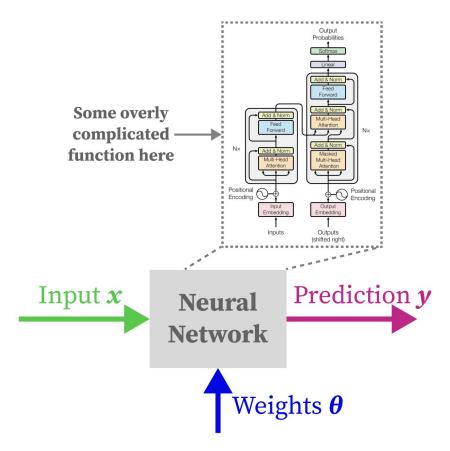
- (a) P sends w to V.
- (b) V checks whether C(x, w) = 0 and accepts if so.

Fun observation: this is a totally valid NARK.

However, this is not zk-NARK nor SNARK!

- 1. w might be secret: this is clearly violated.
- 2. w might be too-large: V has no time to read it!
- 3. C might be too-large: V has no time to compute!

Example: Zero-Knowledge Machine Learning



Goal: for the given **x**, **y**, weights **9**, and model **F**, prove that:

$$y = F(x; \theta)$$

Zero-Knowledge Machine Learning

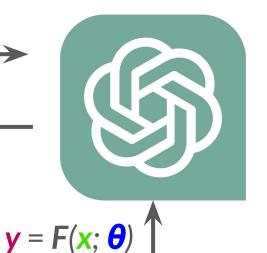
User U

x = "Windows or Linux?"

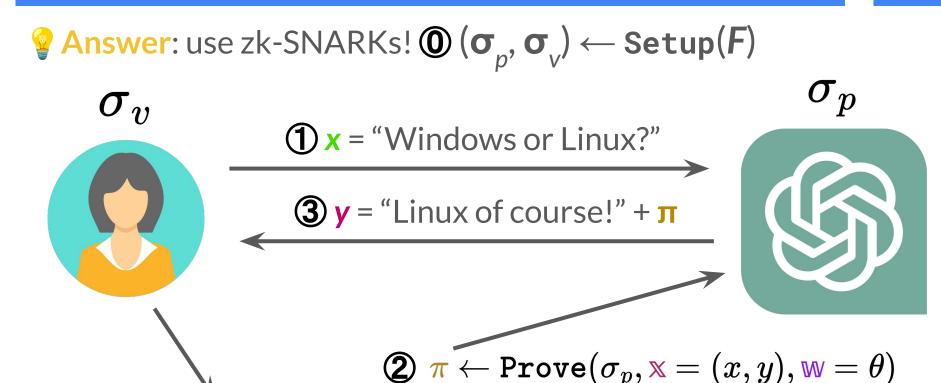
y = "Linux of course!"

Problems:

- 1. How can we be sure that **y** was indeed computed by **x** using **F**?
- 2. How can U do (1) without running F and knowing θ ?



Zero-Knowledge Machine Learning



4 Verify $(\sigma_v, \pi, \mathbf{x} = (x, y))$? <-- - this is MUCH faster than computing F!

ZKML Performance

Fact: Using SOTA proving systems, you can verify proof π in constant-time O(1)! (relates not only to Machine Learning)

this is how π looks in practice -----

Problem: typically, proving times are *very bad*! (or **V** is slow: $O(\sqrt{n})$)

<u>See our solution</u> to this problem.

```
proof.json
"proof": {
"pi_a": [
"1400811599548904237959319989696481634963162026439
383059052135976273120564167".
"1"
"pi_b": [
"1253850816841690029903372652168516381779261463262
    0657244409429354131980454661".
"1091428367996684891779524735521251619761833895668
    2374874239005506750384424444"
"1552416371389031307029683708029978103698707118339
    7727452907670321368057103914"
],
"1".
"0"
"14278428069254250939292704696175748719031859166075
451182707331713513969403299".
"protocol": "groth16",
"curve": "bn128"
"publicSignals": {
"r": "18"
```

Other applications

I have not mentioned numerous other applications:

- □ Scaling blockchain infrastructure (zk-rollups).
- Zero-Knowledge Virtual Machines (zkVM).
- Confidential assets.
- Identity protocols (proof-of-passport-validity, proof-of-humanity by scanning iris).
- ┗ ...

ZKP in the Wild

Why zk-SNARKs should exist?

How can V be ensured by P with time less than linear?

Lemma

(Schwartz-Zippel Lemma). For any multivariate polynomial $\mathbf{f} \in \mathbf{F}[\mathbf{T}_1, ..., \mathbf{T}_n]$, the following holds:

$$\Pr_{(r_1,\ldots,r_v)\leftarrow_{\$}\mathbf{S}}[f(r_1,\ldots,r_v)=0] \leq rac{\deg f}{|\mathbf{S}|}, \quad \mathbf{S} \subseteq \mathbb{F}^v$$

(the statement is trivial for univariate polynomials)

Corollary. Checking equality of two polynomials can be done by picking a random point and comparing evaluations!

Why zk-SNARKs should exist?

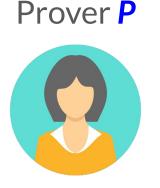
ldea. P can "encode" the arithmetic circuit instance into large polynomials and V can "ask to open" values of polynomials at random points. Then, V checks relations between these polynomials to ensure correctness.

Example

Suppose P wants to convince V that $f \subseteq F[T]$ vanishes over certain subset Ω of size k over finite field F. Note that in such case:

$$f(T)=q(T)Z_{\Omega}(T),\,\,Z_{\Omega}(T)=\prod_{u\in\Omega}(T-u).$$

Zero-Test "SNARK"



$$\textcircled{1} q(T) \leftarrow f(T)/Z_{\Omega}(T)$$

Note

P time: Quasilinear.

V time: $O(\log k) + 2$ queries.

Learns q(r), f(r) and accepts iff $f(r) = q(r)Z_{O}(r)$

Modern Protocols: Poly-IOP

(*Polynomial Interactive Oracle Proofs*). **P** gives oracles to **V** to query polynomials (example on the previous slide).

OK, I believe it is time to introduce *awesome* namings used for cryptographic protocols. The most famous Poly-IOP is:

PlonK'19 (Permutations over Lagrange-bases for Oecumenical Non-interactive arguments of Knowledge)

Improvements:UltraPlonKTurboPlonKaPlonK(not all are Poly-IOPs)HyperPlonKHonkGoblin PlonK

Modern Protocols: SumCheck-based

(Sumcheck-based approaches/Multilinear IOP). Proofs are based on effective IP for the following equation:

$$\sum_{b_0 \in \{0,1\}} \sum_{b_1 \in \{0,1\}} \ldots \sum_{b_v \in \{0,1\}} f(b_0,\ldots,b_v) = H, \,\, f \in \mathbb{F}[T_1,\ldots,T_v]$$

Very effective and simple!

GKR'08

Spartan'19 (there is a SuperSpartan'23 as well!)
zkGPT'25 (used for zkML)

Modern Protocols: Vector IOPs

(*Vector IOPs*). Proofs are typically based on Merkle Tree commitments and Error-Correction Codes.

Transparent setups, security based on hash collision-resistance and security of **FRI'18**. Oh, the name...

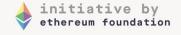
Fast Reed-Solomon... Interactive Oracle Proof of Proximity

zk-STARK'18 Orion'22

Modern Protocols: Vector IOPs

They are so important that there is even a recent 1 million \$ prize for solving ECC proximity gaps conjectures!

The Proximity Prize



\$1,000,000

in prizes to prove (or disprove!) Reed-Solomon proximity gaps conjectures—more info soonTM

An initiative by the Ethereum Foundation to advance the foundations of modern zkVMs.

<u>Link</u> and <u>this one</u>

Modern Protocols: EC-based

Pairing-based. Examples: Pinocchio'13, Groth'16, Pari'24.

Based on the bilinear pairing defined over elliptic curve using some algebraic geometry construction.

$$e(\pi_A,\pi_B)=e(g_1^lpha,g_2^eta)e(\pi_{\mathrm{IC}},g_2^\gamma)e(\pi_C,g_2^\delta)$$

DL-based. Discrete-log based zk-SNARKs work over arbitrary groups. They have slow verifiers, but succinct proofs.

Unfortunately, all are non-quantum-resistant

Examples: Bulletproofs'17, Bulletproofs+'20, Bulletproofs++'22.

Any Questions?

As was requested after the lecture, here are some resources to study cryptography and zero-knowledge!

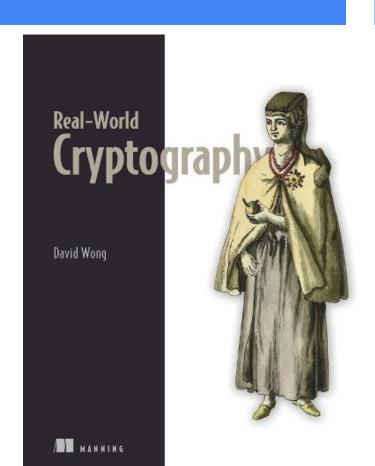
My personal favourite about applied cryptography in general: "A Graduate Course in Applied Cryptography" by Dan Boneh and Victor Shoup:

https://toc.cryptobook.us/

Warning: The book is hard, but it is worth it!

Very starter-friendly book:

"Real-World Cryptography" by David Wong

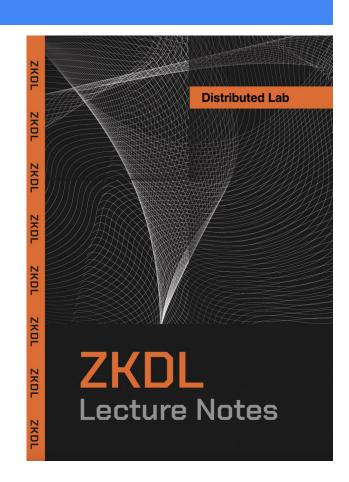


"ZKDL Lecture Notes" by

Distributed Lab!

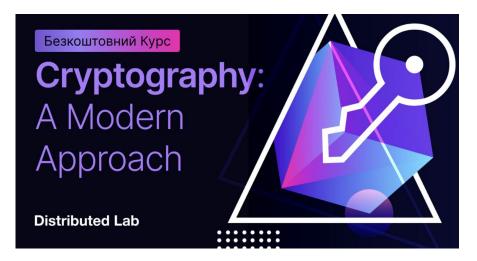
I am the main editor of the book, so if you have any questions – reach out to me!

https://zkdl-camp.github.io/



"Cryptography: A Modern Approach" by Distributed Lab.

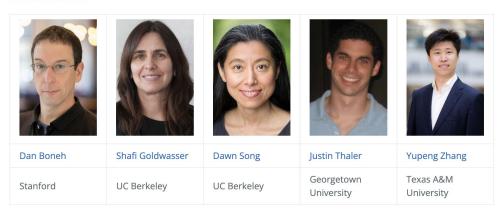
This is our course about general cryptography that, more or less, contains all modern constructions and topics in Cryptography: https://github.com/distributed-lab/crypto-lectures



"ZKMOOC": one of the best courses in zero-knowledge proofs organized by top cryptographers: Dan Boneh, Shafi Goldwasser, Justin Thaler etc.:

https://rdi.berkeley.edu/zk-learning/

Instructors



Resources

"Alin Tomescu's Website": although a lot of blogs are still in progress, many of them are awesome: see Groth16 or Spartan blogs! https://alinush.github.io/

First, the verifier picks random scalars: The right-hand side is: $(r_A, r_B, r_C) \leftarrow \mathbb{F}^3$ Second, randomly combine the v_A, v_B, v_C sumchecks via these scalars:

$$\overrightarrow{T} = r_A v_A + r_B v_B + r_C v_C
= r_A \left(\sum_{j \in \{0,1\}^s} \tilde{A}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j}) \right) + r_B \left(\sum_{j \in \{0,1\}^s} \tilde{B}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j}) \right) + r_C \left(\sum_{j \in \{0,1\}^s} \tilde{C}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j}) \right)
= \sum_{j \in \{0,1\}^s} \left(\underbrace{r_A \tilde{A}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j}) + r_B \tilde{B}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j}) + r_C \tilde{C}(\boldsymbol{r}_x, \boldsymbol{j}) \tilde{Z}(\boldsymbol{j})}_{M_{r_x}(\boldsymbol{j})} \right) \tag{29}$$
The prover proves one sumcheck on the $M_{r_x}(\boldsymbol{j})$ and $M_{r_x}(\boldsymbol{j})$ is prover proves one sum check on the $M_{r_x}(\boldsymbol{j})$ is proved to $M_{r_x}(\boldsymbol{j})$ in $M_{r_x}(\boldsymbol{j})$.

Now, the prover proves one sumcheck on the $M_{r_z}(Y)$ polynomial from above (instead of three as per Eq. 23).

$$\left\{ \left(\sum_{j=0}^{\ell} a_j \left[\frac{\beta u_j(\tau) + \alpha v_j(\tau) + w_j(\tau)}{\gamma} \right]_1, [\gamma]_2 \right) + e\left([C]_1, [\delta]_2 \right) = \left[\alpha \beta + \left[\sum_{j=0}^{\ell} a_j \left(\beta u_j(\tau) + \alpha v_j(\tau) + w_j(\tau) \right) \right]_\top + e\left([C]_1, [\delta]_2 \right) \right] \right\}$$

$$(28)$$

$$\begin{array}{l} \underbrace{ \left[\overline{\mathcal{I}}_{1}, [\delta]_{2} \right] }_{2} \text{ term in the RHS above which is equal to:} \\ \underbrace{ \left[(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right]}_{\delta} + \sum_{i=0}^{n-2} h_{i} \underbrace{ \left[\frac{\mathcal{L}_{i}(\tau)(\tau^{n}-1)}{\delta} \right]}_{1} + s[A]_{1} + r[B]_{1} - rs[\delta]_{1}, [\delta]_{2} \\ = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) + \sum_{i=0}^{n-2} h_{i} \tau^{i} \left(\tau^{n}-1 \right) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} = \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + h(\tau)(\tau^{n}-1) + s \delta A + r \delta B - rs \delta^{2} \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + \alpha v_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m} a_{j} \left(\beta u_{j}(\tau) + w_{j}(\tau) \right) \right]}_{\tau} + \underbrace{ \left[\sum_{j=\ell+1}^{m$$