Bionetta: Ultimate ZKML Framework

April 25, 2025

Distributed Lab Rarimo

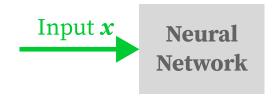
- distributedlab.com/
- github.com/rarimo/bionetta-tf

Intro to ZKML

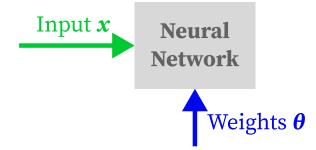
Think of a neural network as a black box...

Neural Network

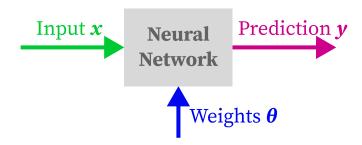
This **black box** takes some input x (e.g., image or a text prompt)...



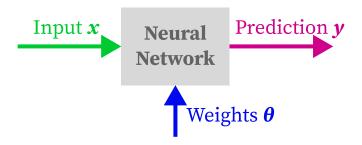
Besides the input x, you can tweak the parameters θ of the black box — so-called *weights* — which changes the behavior of the black box. They are typically *fixed*...



Given the inputs x and weights θ , you can get the prediction y (e.g., person's features or Al's text response)...

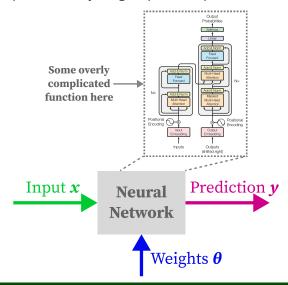


Given the inputs x and weights θ , you can get the prediction y (e.g., person's features or Al's text response)...



We denote such computation as $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$.

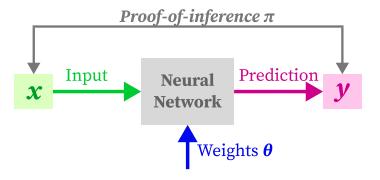
Though, in practice everything is quite complicated...



Where ZK?

So why do we need ZK in this process?

ZKML: Engineering Perspective



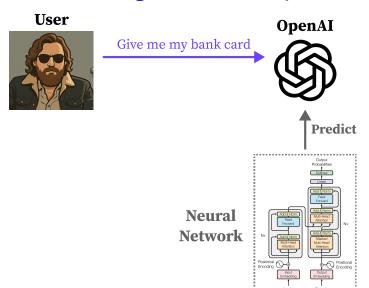
Prove that for $\mathbf{x}, \mathbf{y}, \mathbf{\theta}$ we indeed have $\mathbf{y} = f(\mathbf{x}; \mathbf{\theta})$.

Yet, what is public and what is private? Obviously, y is public, so what about x and θ ?

Give me my bank card Give me my bank card

(shifted right)

ZKML: Private Weights θ , Public Input x



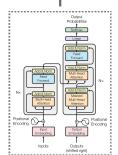
User

Give me my bank card

Sure! Here it is Card A

Predict

Neural Network

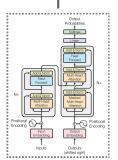


Give me my bank card

Sure! Here it is Card B

Predict

Neural Network



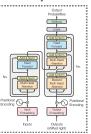
User

x = "Give me my bank card"

OpenAI

x = "Give me my bank card"

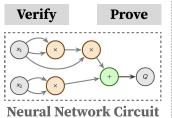
Predict

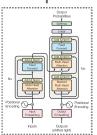


Neural Network

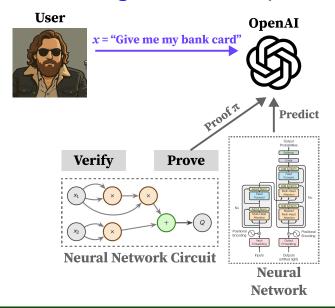
User OpenAI

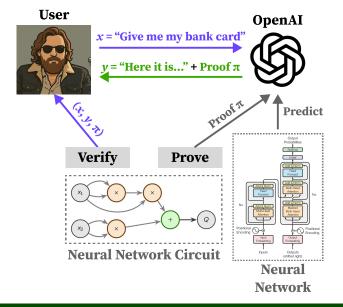
x ="Give me my bank card"





Neural Network





Where ZK? Public Weights θ , Private Input x

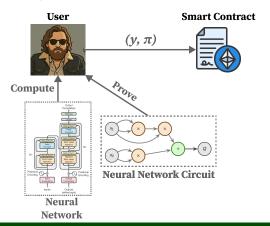
Problem: private weights \implies private model \implies centralization.

So the client-side is the only way to go!



Our Usecases

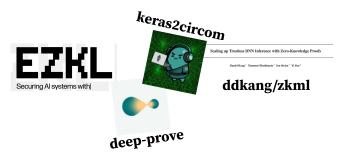
- ✓ Biometric Proximity Proof: proof that you are you based on the biometric data (e.g., face, fingerprint, etc.).
- ✓ Liveness Proof: proof that you are indeed an alive human being (e.g., not a bot) based on the screenshot.



Benchmarks

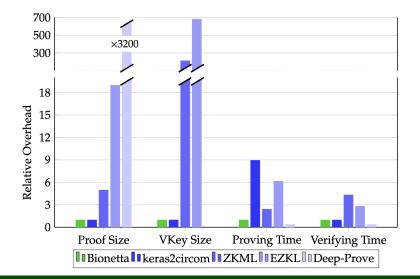
Client-Side ZKML Requirements

- ✓ Fast: the proof generation time should be less than a minute.
- ✓ Lightweight: the proof must be small enough to be provable on the smart-contracts (without significant fee increase). Verification key should also be small for similar reasons.
- ✓ Not resource-consumable: the proof generation should be manageable on small devices.



Bionetta Benchmarks

https://rarimo.com/learning-hub/benchmarking-bionetta-61



Bionetta Benchmarks in the Wild

- ✓ Liveness Neural Network is roughly 1.5 mln parameters in size, takes 1 million constraints and roughly 20 seconds and 1.5GB of RAM to generate a proof. Benchmark accuracy is 96%.
- ✓ Face Recognition Neural Network is roughly 2.0 mln parameters in size, takes 800k constraints. Currently measuring the time, but expected to be similar to the Liveness NN.

Note

We haven't tested running Bionetta over existing neural network (e.g., MobileNetV2) and currently use customly-crafted NNs.

If the neural network contains N non-linearity calls, then the circuit size |C| can be approximated as $|C| \approx 255 N$.

Developing Bionetta

Step I: Train the Model

Preferrably, on the Bionetta custom layers:

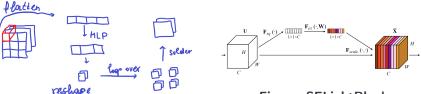
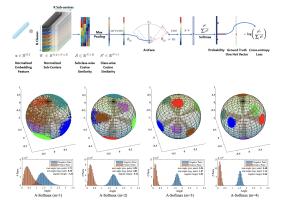


Figure: EDLightConv2D

Figure: SELightBlock

Training is Hard!



$$L_4 = -\log \frac{e^{s(\cos(m_1\theta_{y_1}+m_2)-m_3)}}{e^{(\cos(m_1\theta_{y_1}+m_2)-m_3)}} \sum_{s=s_1\theta_s}^{N}$$
. (4)

As shown in Figure 4(b), by combining all of the above-motioned margins $(\cos(m_1\theta + m_2) - m_3)$, we can easily get some other target logit curves which also achieve high performance.

Thus we want.

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$
,

$$\forall (f(x_i^a), f(x_i^p), f(x_i^n)) \in T$$
. (2)

where α is a margin that is enforced between positive and negative pairs. T is the set of all possible triplets in the training set and has cardinality N.

The loss that is being minimized is then L =

$$\sum_{i}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]_{+}.$$
(3)

Underfit, Vanishing Gradients, Vector Collapse etc. . .

0000000

Step II: Compiling Circuits

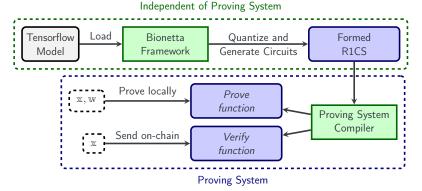


Figure: Architecture of the Bionetta framework

Note

Intro to ZKML

Our BionettaV1 framework is, in fact, an R1CS constructor.

Architecture: Low-Level

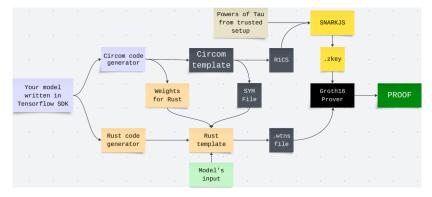


Figure: Low-Level Bionetta Architecture

 $\mathsf{TF}\;\mathsf{Model}\to\mathsf{Bionetta}\to\mathsf{Circom}\to\mathsf{R1CS}\to\mathsf{Rust}\to\mathsf{Bindings}$

We've built our custom (blazingly) fast Rust witness generator!

Key Optimization: Circuit-Embedded Weights

Assume you want to implement a function:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^{n} \theta_{i} x_{i} + \theta_{0}$$
 // Linear Regression

Idea #1

Public Signal: Weights $\theta = (\theta_0, \dots, \theta_n)$. Private Signal: Inputs $\mathbf{x} = (x_1, \dots, x_n)$.

Circuit: First, assert $r_i = \theta_i x_i$ for each $i \in \{1, ..., n\}$. Then compute the result $\theta_0 + \sum_{i=1}^n r_i$. **Circuit size:** $\mathcal{O}(n)$.

Idea #2

Constants: Weights $\theta = (\theta_0, \dots, \theta_n)$.

Private Signal: Inputs $\mathbf{x} = (x_1, \dots, x_n)$.

Circuit: Compute linear sum $\sum_{i=1}^{n} \theta_i x_i$ directly. Circuit size: 0.

Corollary: Circuit-Embedded Weights

Corollaries

- ✓ The majority of the traditional Machine Learning algorithms such as PCA, LDA, linear or logistic regression costs 0 constraints.
- ✓ All linear operations inside the neural network are free.

Corollary: Circuit-Embedded Weights

Corollaries

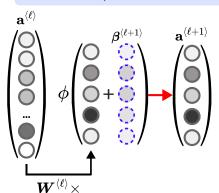
- ✓ The majority of the traditional Machine Learning algorithms such as PCA, LDA, linear or logistic regression costs 0 constraints.
- ✓ All linear operations inside the neural network are free.

Conclusion. We must use R1CS-compatible proving framework such as: Groth16, Spartan, Ligero, Aurora, Fractal.

Corollary: Circuit-Embedded Weights

Corollaries

- ✓ The majority of the traditional Machine Learning algorithms such as PCA, LDA, linear or logistic regression costs 0 constraints.
- ✓ All linear operations inside the neural network are free.



Issue. Typically, after the linear operations, we apply the non-linear operation (e.g., $\max\{0,x\}$). Each one currently costs **255** constraints. We have an approach to reduce this cost down to ≈ 20 constraints.

Problems

- ✓ Problem 1. Add support for more neural network layers.
- ✓ **Problem 2.** Activation-optimized neural networks are *very hard* to train. Further optimizations allow more complex models ⇒ better accuracy. E.g., 1 mln constraints ≈ 3900 non-linearities.

Problems

- ✓ Problem 1. Add support for more neural network layers.
- ✓ **Problem 2.** Activation-optimized neural networks are *very hard* to train. Further optimizations allow more complex models ⇒ better accuracy. E.g., 1 mln constraints ≈ 3900 non-linearities.

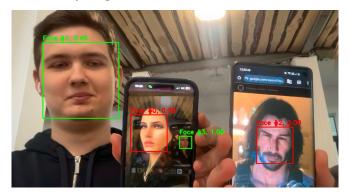


Figure: Shit happens

Problems

- ✓ **Problem 1.** Add support for more neural network layers.
- ✓ **Problem 2.** Activation-optimized neural networks are *very hard* to train. Further optimizations allow more complex models \Longrightarrow better accuracy. E.g., 1 mln constraints \approx 3900 non-linearities.

Future Directions

Goal 1. Implement **UltraGroth**: ≈ 20 gates per activation.

• Compute the final commitment $C^{(d)}$:

$$C^{(d)} = \sum_{j \in \text{round}_d} w_j C_j + \sum_k h_k Z_k + sA + rB' - \sum_{k < d} r_k [\delta_k]_1 - rs[\delta_d]_1$$

• Compute the public input commitment:

$$IC = \sum_{j \in \text{pub}} w_j C_j$$

Verification

The verifier performs the pairing check:

$$e(A, B) = e([\alpha]_1, [\beta]_2) \cdot e(IC, [\gamma]_2) \cdot \prod_{k=0}^{d} e(C^{(k)}, [\delta_k]_2)$$

Figure: Excerpt from our UltraGroth technical specification.

Can be used in other projects as well if you need effective range checks!

Intro to ZKML

Future Directions

Goal 2. More blogs and media activity on the way.

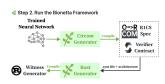


Figure: Engineering Blogs

Figure: Research Papers

Figure: Technical Blogs

Figure: Demos

Future Directions

Goal 3. Noir + Bionetta Integration.

In particular, this includes:

- ✓ Custom ACIR to R1CS converter.
- ✓ Groth16 (and potentially UltraGroth) backend.
- ✓ Circuits written in a human-readable format (yes, Circom, we are looking at you).

Any Questions?

