Intro to ZKML Benchmarks Developing Bionetta
0000000 0000 000000000000

Bionetta: Ultimate ZKML
Framework

April 25, 2025

Distributed Lab
Rarimo

& distributedlab.com/

w’

() github.com/rarimo/bionetta-tf

https://distributedlab.com/
https://github.com/rarimo/bionetta-tf

Intro to ZKML Benchmarks Developing Bionetta
©000000 0000 000000000000

Intro to ZKML

Intro to ZKML
0000000

What is a neural network?

Think of a neural network as a black box. . .

Neural
Network

Intro to ZKML
0000000

What is a neural network?

This black box takes some input x (e.g., image or a text
prompt). . .

Input x Neural
Network

Intro to ZKML
0000000

What is a neural network?

Besides the input x, you can tweak the parameters 6 of the
black box — so-called weights — which changes the behavior
of the black box. They are typically fixed. ..

Input x Neural
Network

TWeights 0

Intro to ZKML
0000000

What is a neural network?

Given the inputs x and weights 6, you can get the prediction y
(e.g., person’s features or Al's text response). ..

Input x Neural Predictiony
Network

TWeights 0

Intro to ZKML
0000000

What is a neural network?

Given the inputs x and weights 6, you can get the prediction y
(e.g., person’s features or Al's text response). ..

Input x Neural Predictiony
Network

TWeights 0

We denote such computation as y = f(x;).

What is a neural network?

Though, in practice everything is quite complicated. . .

Some overly :
complicated —p
function here :

Input x Neural Predictiony
Network

TWeights 0

Intro to ZKML Benchmarks Developing Bionetta

[e]e] lele]ele)

Where ZK?

So why do we need ZK in this process?

Intro to ZKML
[e]e]eY Yolele}

ZKML: Engineering Perspective

Proof-of-inference
v In . e
put Neural Prediction
X Network

TWeights 0

v

Prove that for x,y, 8 we indeed have y = f(x;).

Yet, what is public and what is private? Obviously, y is public, so

what about x and 87

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

OpenAl

Give me my bank card

Intro to ZKML

0000e00

ZKML: Private Weights 6, Public Input x
User OpenAl

Give me my bank card

TPredict

Neural
Network : -

Intro to ZKML

0000e00

ZKML: Private Weights 6, Public Input x
User OpenAl

Give me my bank card

Sure! Here it is Card A

TPredict

Neural
Network : -

Intro to ZKML

0000e00

ZKML: Private Weights 6, Public Input x

User OpenAl

Give me my bank card

Sure! Here it is Card B

TPredict

Neural
Network : -

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

User OpenAl

x = “Give me my bank card”

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

User OpenAl

x = “Give me my bank card”

TPredict

Neural
Network

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

User OpenAl

x = “Give me my bank card”

TPredict

Neural
Network

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

User OpenAl

x = “Give me my bank card”

Neural
Network

Intro to ZKML
0000800

ZKML: Private Weights 6, Public Input x

User OpenAl

x = “Give me my bank card”

y=“Hereitis...” + Proof &t

Neural
Network

Intro to ZKML
00000@0

Where ZK? Public Weights 0, Private Input x

Problem: private weights — private model = centralization.

So the client-side is the only way to go!

Intro to ZKML
000000e

Our Usecases

v/ Biometric Proximity Proof: proof that you are you based on
the biometric data (e.g., face, fingerprint, etc.).

v Liveness Proof: proof that you are indeed an alive human being
(e.g., not a bot) based on the screenshot.

User Smart Contract

Neural Network Circuit

Neural
Network

Intro to ZKML Benchmarks Developing Bionetta
0000000 €000 000000000000

Benchmarks

Intro to ZKML Benchmarks

)0000O¢ 0@00

Client-Side ZKML Requirements

v Fast: the proof generation time should be less than a minute.

v Lightweight: the proof must be small enough to be provable on
the smart-contracts (without significant fee increase). Verification
key should also be small for similar reasons.

v Not resource-consumable: the proof generation should be
manageable on small devices.

keraszc ircop,

E I H I Scaling up Trustless DNN Inference with Zero-Knowledge Proofs

Securing Al systems with| ddkang / zkml

Benchmarks
0000

Bionetta Benchmarks
https://rarimo.com/learning-hub/benchmarking-bionetta-61

700
500
300

-~
%3200

JJ.I.J

Proof Size VKey Size Proving Time Verifying Time
liBionettal keras2circom 11 ZKML 1D EZKL [Deep-Prove |

=
a1

Relative Overhead
fuy
o

o W o \©

https://rarimo.com/learning-hub/benchmarking-bionetta-61

Benchmarks
ocooe

Bionetta Benchmarks in the Wild

v Liveness Neural Network is roughly 1.5 mln parameters in
size, takes 1 million constraints and roughly 20 seconds and
1.5GB of RAM to generate a proof. Benchmark accuracy is 96%.

v Face Recogpnition Neural Network is roughly 2.0 min
parameters in size, takes 800k constraints. Currently measuring
the time, but expected to be similar to the Liveness NN.

Note
We haven't tested running Bionetta over existing neural network
(e.g., MobileNetV2) and currently use customly-crafted NNs.

If the neural network contains N non-linearity calls, then the circuit

size |C| can be approximated as | |C| ~ 255N |.

Intro to ZKML Benchmarks Developing Bionetta
0000000 0000 ©00000000000

Developing Bionetta

Developing Bionetta
0®0000000000

Step |I: Train the Model

Neural Network Trained
@ Neural Network
(:/1//\/
Dataset

Preferrably, on the Bionetta custom layers:

Patien
l
HLP T ,
[T sokeler '/ \
v
@ S:I ovex @ @ K
veshape Figure: SELightBlock

Figure: EDLightConv2D

Developing Bionetta

0O0@000000000

Training is Hard!

Ksubentres

° ; (10, +mz) ~ms)
2 o Ly=—lo L@
- () 1= 108 ety T SN grend
Hl S 5d eleostm,; S AN
z As shown in Figure[4(b), by combining all of the above-motioned
+ . . robaitey Ground Tuth Crosvenropy margins (cos(m16 + mz) — mg), we can easily get some other
x we K SeRVXK §eRMX e ot Vector * target logit curves which also achieve high performance.
Normaliad Normalied Subclaswise Clasewise
Embedding SubConters Coune . Coune
Festurs simiriy Sty

‘Thus we want,
17 @) = FEDIE + o < [1£(2f) = F@)IE W

V(@)), S € T o

where a is a margin that is enforced between positive and
negative pairs. 7 is the set of all possible triplets in the
training set and has cardinality N.

‘The loss that is being minimized is then L =

x
3 (1) = £ = 17(e) - SN e, -
' @

AcSoftmax (m=1) ASoftmax (m=2)

Underfit, Vanishing Gradients, Vector Collapse etc. . .

Step Il: Compiling Circuits

Independent of Proving System

1 | Tensorflow | Load Bionetta Quantize and Formed .
E Model Framework Generate Circuits | R1CS !

...

Hp——— ~ Prove locally Prove :
' X, v :
RS funci | :
: unction je— Proving System | .
: . Compiler :
i 271 Send on-chain Verify | : :
o E function :
I .

Proving System

Figure: Architecture of the Bionetta framework

Our BionettaV1 framework is, in fact, an R1CS constructor.

Intro to ZKML Benchmarks Developing Bionetta

[e]e]e]e] lelele]ele]e]e]

Architecture: Low-Level

Powers of Tau

from trusted SNARKJIS
setup
Circom code Circom .zkey
generator template
Your model Weights Groth16
written in o
for Rust Prover
Tensorflow SDK .
Rust code RN Rust
generator template
Model's
input

Figure: Low-Level Bionetta Architecture

TF Model — Bionetta — Circom — R1CS — Rust — Bindings

We've built our custom (blazingly) fast Rust witness
generator!

Intro to ZKML Benchmarks Developing Bionetta

[e]e]e]e]e] lele]ele]e]e]

Key Optimization: Circuit-Embedded Weights

Assume you want to implement a function:

f(x;0)= Z 0ixi +0o // Linear Regression

i=1
Idea #1
Public Signal: Weights 8 = (6o, . ..,0,).
Private Signal: Inputs x = (x1, ..., Xp)-
Circuit: First, assert r; = 6;x; foreach i € {1,...,n}. Then compute

the result 6o + >_"_; r;. Circuit size: O(n).

Idea #2
Constants: Weights 8 = (6o, . .., 0,).
Private Signal: Inputs x = (x1, ..., Xp).

Circuit: Compute linear sum "7 ; 6;x; directly. Circuit size: 0.

Developing Bionetta
000000®00000

Corollary: Circuit-Embedded Weights

v The majority of the traditional Machine Learning algorithms such
as PCA, LDA, linear or logistic regression costs 0 constraints.

v All linear operations inside the neural network are free.

Developing Bionetta
000000®00000

Corollary: Circuit-Embedded Weights

v/ The majority of the traditional Machine Learning algorithms such
as PCA, LDA, linear or logistic regression costs 0 constraints.

v All linear operations inside the neural network are free.

Conclusion. We must use R1CS-compatible proving frame-
work such as: Groth16, Spartan, Ligero, Aurora, Fractal.

Developing Bionetta
000000®00000

Corollary: Circuit-Embedded Weights

Corollaries

v/ The majority of the traditional Machine Learning algorithms such
as PCA, LDA, linear or logistic regression costs 0 constraints.

v All linear operations inside the neural network are free.

o
~
~
>

gl 2l
Issue. Typically, after the linear
operations, we apply the
non-linear operation (e.g.,
max{0, x}). Each one currently
costs 255 constraints. We have
an approach to reduce this cost

down to ~ 20 constraints.

“o
iy

S

@)
@ <
o| O+
®
O

.
o
.
o
] .
“o

Q®: 0000
Ce0eoO

.

WO x

Developing Bionetta
0000000e0000

Problems

v/ Problem 1. Add support for more neural network layers.

v Problem 2. Activation-optimized neural networks are very hard
to train. Further optimizations allow more complex models —-
better accuracy. E.g., 1 min constraints ~ 3900 non-linearities.

Developing Bionetta
0000000e0000

Problems
v Problem 1. Add support for more neural network layers.
v Problem 2. Activation-optimized neural networks are very hard

to train. Further optimizations allow more complex models =
better accuracy. E.g., 1 mIn constraints ~ 3900 non-linearities.

Figure: Shit happens

Developing Bionetta
0000000e0000

Problems

v Problem 1. Add support for more neural network layers.

v/ Problem 2. Activation-optimized neural networks are very hard
to train. Further optimizations allow more complex models —>
better accuracy. E.g., 1 mIn constraints &~ 3900 non-linearities.

Developing Bionetta

000000008000

Future Directions

Goal 1. Implement UltraGroth: ~ 20 gates per activation.

o Compute the final commitment (9

D= N +thZL+sA+rB S reldls = rsfoaly

jeround, k<d

e Compute the public input commitment:

IC= > wC

jepub
Verification

The verifier performs the pairing check:

(4, B) = c(la]y, [8]2) - ¢(IC, [H(’(F““) [0k]2)

k=0

Figure: Excerpt from our UltraGroth technical specification.

Can be used in other projects as well if you need effective range
checks!

hmarks Developing Bionetta

000000000 e00

Future Directions

Goal 2. More blogs and media activity on the way.

which wauid have 5p = L1 bit of precision. To get the fini resut, we dvide by 2

£ Step 2. Run the Bionetta Framework

Trained
Neural Network G=R rics e “real value.
5 e COME S e whcledea of our arthomizaton schemo i opictad oo
G —> % Generator — ! : — —
S o @ Verifier ! Quantized Some Some Quantized
o Contract | values Operations. mT—’ Operations azT_’ output

Witness Compil

Generator %" Generator

Rust

Tnput
Data

Figure: Technical Blogs

Figure: Engineering Blogs

MNIST ZK Proof Demo

¥ Bionetta

Bionetta: Efficient Client-Side Zero-Knowledge
Machine Learning Proving
echnic r

Rarimo Distributed Lab,
com tributedlab. con

Figure: Research Papers

Figure: Demos

Developing Bionetta
000000000000

Future Directions

Goal 3. Noir + Bionetta Integration.

onetta + < Aztec

In particular, this includes:

v/ Custom ACIR to R1CS converter.
v Grothl6 (and potentially UltraGroth) backend.

v Circuits written in a human-readable format (yes, Circom, we are
looking at you).

Any Questions?

v

& distributedlab.com
Q) github.com/distributed-lab/nero

https://distributedlab.com/
https://github.com/rarimo/bionetta-tf

	Intro to ZKML
	Benchmarks
	Developing Bionetta

