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Preliminaries
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Definition
Field K is a set equipped with appropriate addition and multiplication

operations with the corresponding well-defined inverses, where you can
perform the basic arithmetic.

R (real numbers) is a field.
Q (rational numbers) is a field.

C (complex numbers) is a field.

N (natural numbers) is not a field: there is no additive inverse for 2
(=2 is not in N).

Z (integers) is not a field: additive inverse is defined, but the
multiplicative is not (271 is not defined).
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Finite Field

Definition
Finite field I, is a set {0,1,...,p — 1} equipped with basic arithmetic (+
and x) modulo p.

v

Example
Fs is a set with elements {0, 1,2,3,4}. Examples of calculations:
Q 3+4=7=2(inFs);
@ 3-4=-1=4 (inTFs);
@ 3x4=12=2(in Fs);
Q 371 =2 (since 3-2=1inTFs);
Q 2/3=2x3"1=4inTFs.

Typically, p is a large (e.g., 254-bit) prime number.
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Finite Field lllustration

Figure: lllustration of performing addition in Z1, (not really a field, but the rules
are identical besides inversion).
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Elliptic Curve

Definition
Elliptic Curve E(K) in short WeierstraB3 form over the field K is a set of
coordinates (x,y) from K such that

y2=x*+ax+b, (abecK)

together with a “point at infinity” O.

BN254 (or BN256/BN128) is the curve over K = F, where:

yv’=x3+3 (a=0,b=3)
p = 0x30644¢72e131a029b85045b68181585d97....
...8162916871ca8d3c208c16d87cfd47
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Elliptic Curve on the Figure

O

Figure 2.1: Figure 2.2: Figure 2.3: Figure 2.4:

Singular curve Singular curve Smooth curve Smooth  curve
y?=x% -3z +2 y? =28 y=x4+z+1 v¥=2—=z
over R. over R. over R. over R.

Figure: lllustration of various elliptic curves over R (that is, E(R)).
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Actually, these are Elliptic Curves...

But actual elliptic curves look more like that...

R4

012345678910
Figure 2.9: The points (excluding O) on E(Fy;).

Figure: lllustration of an elliptic curve E(Fq1) : y? = x3 — 2x.
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Group structure

Definition
Group (G, @) is just a set with defined operation @, which has “nice”
properties (e.g., closure).

Idea: A set of objects is useless unless we have practical relations between
elements. For example, 7 and 13 are integers, but the structure is
worthless without the ability to add/multiply them.

Theorem

(E(Fp), ®) is a group where operation & between points P, Q € E(F})
means drawing a line between P and Q (or tangent line if P = Q), finding
intersection with E(IF,) and “reflecting around Ox axis” (negating y
component). We denote the group order by q := |E(Fp)|.

Also, we denote [a]P = P & P& --- @& P — scalar multiplication (a € Fy).

a times
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[llustration of addition

R=PoQ

Figure 2.5: Elliptic curve addition. Figure 2.6: Elliptic curve doubling.

Figure: lllustration of operation R =P & @
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Effective EC Point Addition
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Classical Approach

Definition
Point P € E(FF,), represented by coordinates (xp, yp) is called the affine
representation of P.

So, how do we add (xg, yr) = (xp,yp) ® (x@,yq) where (xp, yp) and
(xq@, yq) are affine representation of points P, Q € E(F,)?
Algorithm 1: Classical adding P and Q for xp # xq

© Calculate the slope A < (yp — y@)/(xp — x@).

Q Set
XR < )\2 — Xp — XQ, YR < )\(Xp —XR) — yp.

Easy, right? What can go wrong?
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Why this is bad?

Let Algorithm 1: Calculating P & Q

@ M — cost of multiplication;

-1
@ S — cost of squaring; Sl yf)X(XP —Xq)
@ | — cost of inverse. XR <= A" — Xp — Xq
(all'in ]Fp) YR  AX(xp — xg) — yp

Then, calculating the aforementioned formula costs:

2M + S + 1

Well, just 4 operations... Easy right?

Main Problem!

Typically, 1 = 80M. So, the effective cost is roughly 80 operations. Too
bad.
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Solution: Projective Coordinates

Definition
We now represent point P € E(F,) via three coordinates (Xp : Yp : Zp).

Such form is called projective coordinates. To convert this form to affine
form, we use map (Xp : Yp : Zp) — (Xp/Zp, Yp/Zp), (0: Yp :0) — O.

Definition

If points (Xy : Y1 : Z1) and (Xz : Y2 : Z2) map to the same affine point,
they are called equivalent. Formally, if exists A € I, such that
(X1:Y1:2) = (AXo: A\Ya : \2p).

v,

Geometrical interpretation: two points (X1 : Y1 : Z1) and (X2 : Y2 : 2p)
are equivalent if the line through them intersects (0,0,0) in “3D space”.
The elliptic curve equation (or rather surface) is then:

|¥2Z = X3 + aXZ2 + bZ°]
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Elliptic Curve in Projective Form

Figure: Elliptic Curve Y2Z = X3 4 3273 visualized over reals R in 3D space. The
“affine” curve is red, lying on a plane z = 1.
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Equivalent points in projective form

Figure: Points P and P’ are equivalent (P ~ P’) since line PP’ intersects
0 = (0,0,0).
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What does it give us?

Now we have three instead of two coordinates... Why is it better?
Because addition now looks like:

X3 = (X1Y2 + XoY1)(Y1Ye — 3021 25)

—3b(Y1Z2 + Yo Z1) (X122 + X2 Z1),
Ys = (Y1Ya + 3021 25)(Y1Ya — 3bZ1Z2) 4+ 90X 1 Xo( X122 + X2 2Z1),
Z3 = (Y1Za + YoZ1)(Y1Ya + 3bZ1 Z3) + 3X1 Xo(X1Y2 + X2Y1),

Figure: Elliptic Curve addition in projective form.

Although looks much more complicated, it takes only 14M compared to
80M.
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lllustration of adding two points
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General Strategy

@ Convert affine form (Xp, Yp) to the projective (Xp : Yp : 1).

@ Make many additions, doubling, multiplications etc. in projective
form, getting (Xgr : Ygr : Zg) at the end.

© Convert back to affine coordinates:

(XR : YR : ZR) — (XR/ZR, YR/ZR)

Affine Space (Xp, Yp) (XR/ZR,YR/ZR)
Complex

Projective Space (Xp:Yp:1)—> Algorithm

Figure: General strategy with EC operations.
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EC Pairing
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Definition

EC Pairing e : G; X G, — G 7 is a magical map satisfying the following
property:

e([a]P, [b]Q) = e([ab]P, Q) = e(P, [ab] Q) = (P, Q)*".

Pairing for BN254
For BN254, we have:
o Gy — "regular” points on the curve E(Fp).

@ Ga — “good” points on the twisted curve E'(F2) over the field
extension F2 (y? = x>+ b/, b# b' € Fp2).

e G7 — multiplicative scalars from extension 1> (namely, i, ).
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EC Pairing lllustration

e(P,Q)
aP

Figure: Pairing illustration. It does not matter what we do first: (a) compute [a] P
and [b]@ and then compute e([a]P, [b]Q) or (b) first calculate e(P, Q) and then
transform it to e(P, Q).
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Example: BLS Signature

Suppose we have pairing e : G1 x Go — G (with generators Gy, Gy,
respectively), and a hash function H, mapping message space M to Gj.
Definition
BLS Signature consists of the following algorithms:

@ Gen(-): Key generation. sk £ Lq, pk < [sk] G2 € Go.

@ Sign(sk, m). Signature is o < [sk]H(m) € G;.

o Verify(pk, m, o). Check whether e(H(m), pk) = e(o, G2).

Let us check the correctness:
e(o, G2) = e([sk]H(m), G2) = e(H(m), [sk] G2) = e(H(m), pk)

Remark: G and G, might be switched: public keys might live instead in
G1 while signatures in Go.

Distributed Lab Elliptic Curves 24 /38 May 16, 2024



What it takes to implement?

Protocols

e(P, Q)

EF,) EFx)

Figure: Various things under the hood.
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What are field extensions?

These are “like” complex numbers C. Recall that the complex number is
a+ ib where a,b € R and i = —1. So that:

(a+ ib)(c + id) = ac + (ad)i + (bc)i + (bd)i?
= (ac — bd) + (ad + bc)i

Field extension F . is a + ib where a,b € F, and /2 = —1. The same
structure, essentially :)

Problems happen with F 6 and F,12 though since the intuition with
complex numbers break...
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Polynomials

Definition
Polynomial K[X] is an expression

p(X):c0+c1X+C2X2+---+c,,X”, ¢ eK

Definition

Polynomial p € K[X] is said to be irreducible if there are two non-constant
polynomials g, r € K[X] such that p = gr.

Example: X2 + 4 € R[X] is irreducible.

Definition
Quotient group K[X]/(p) (which is a field) over irreducible polynomial p
is polynomials from K[X] modulo p.

Distributed Lab Elliptic Curves 27/38 May 16, 2024 27/38



Arithmetic in quotient group

Suppose K = R and p(X) = X2 + 1 — irreducible over R. Then, example
elements are 1+ 2X,2 + 3X € R[X]/(X? + 1). You can do the regular
arithmetic with them:

o Addition: (1+ 2X)+ (2+3X) =3+5X

e Multiplication: (1 +2X)(2+3X) =2+ 7X + 6X2. But, we need to
reduce mod (X2 +1). So notice that

6X2+7X +2=6(X>241)+ (—4+7X)
[
result

@ Division (except for by 0 + 0X) and subtraction is also allowed.
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Analogy!

In fact, R[X]/(X? + 1) is the same structure as complex numbers!
(Formally, they are isomorphic R[X]/(X? 4 1) = C). For example, when
we multiplied (1 + 2X)(2 4 3X), we got —4 4+ 7X. But...

(1+20)(2+3i)=2+7i+ 6i° =—-4+7i

=—6

Notice, that R[X]/(X? + 9) would have a similar structure and is also
isomorphic to C. Thus, the choice of p(X) is not unique.
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Tower of Extensions

We are ready to define ]Fpu. So,

Tower of Extensions

To define [F 12, we use the following objects with
B=-1€F,{=9+ueFpu:

Fpe = Fplu]/(u® — B)
Fpe = Isz[v]/<v3 —¢)
Foi = Fpﬁ[W]/<W2 —v)
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Visualization (sort of)

C() + c1v + 021) co +c1v+ czv
¢+ cu E[]+Clu+0\\l )(-v, R "01“ C+eu L‘/\U’ *
[v\] 9 [W\]
Fp  Fp g Fp  Fp ‘\qﬂ, §§p

Figure: Tower of extensions visualized
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Formulating more simply

More simply:
o F,2 is a number a + bu where a,b € Fp and v? = —1.
@ Fp6 is a number a+ bv + cv? where a, b, c € Fp2 and vi=90+u.

o F,u2 is a number a+ bw where a,b € F s and w? = v.

Intuition
You should regard an element from F« as a regular number, but
composed of k scalars from [F, in a “special” way.
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Curves used

As mentioned, G is a regular curve y? = x3 + 3.
However, G is a curve (called twisted curve):

3
2 3

= , wh ,yeF
y X+9 uwerexy p2

So the element in G is described using four scalars from F:
(a+ bu,c+du), a,b,c,declF,

To conclude:
e Gy is a group of points on the curve y? = x3 4 3 over Fp.

e G, is a group of points on the curve y? = x3 + 9i—u over the field
extension [ .

o Gr "=" IE‘;;12 is a multiplicative subgroup of scalars from F .
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What it takes to implement?

Calculating pairing e(P, Q)
@ x « MillerLoop(P, Q) € F 2.
@ f + FinalExp(x) = x(P*~V/a ¢ Fre.
@ return f.

So, one needs to:
@ Implement MillerLoop that outputs the scalar f in 12, also called a
Tate pairing.
@ Implement final exponentiation (FinalExp) that raises f to the power
of (p'? — 1)/q — this ensures there are no equivalence classes in the
output (called Reduced Tate pairing or simply ate pairing).

Again, understanding the construction requires ton of theory (in particular,
from abstract geometry), but the algorithms are quite concrete.
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Some excerpts from papers...

Algorithm 1 Optimal ate pairing over Barreto—Naehrig curves.
Input: P € G; and Q € G,.
Output: acp:(Q, P).
1. Write s =6t+2 as s = EiL:_Ol 5;2¢, where s; € {—1,0,1};
T« Q, f< 1
fori=L—-2to0do
f <« f2-lrr(P); T « 2T;
if s; = —1 then
ffilr )T+ T-Q;
else if s; = 1 then
feflrgP) T« T+Q;
end if
10. end for
11. @1+ m(Q); Q2 « mp2(Q);
12. f ¢ f I, (P) T+ T+ Qi
13. f ¢ flr-q,(P); T+ T — Qx;
14. f + f(plz_l)/r;
15. return f;

© PN wWN

Figure: Miller Loop algorithm formalized,

Distributed Lab Elliptic Curves 35/38 May 16, 2024



Some excerpts from papers...

Algorithm 31 Final E
Require: f € iz = Fyofw]/(w® — ), where f = g + hw.
Ensure: f®''~D/" ¢ F .

L fiefi
2 o f7h

3. f i fx

4. f« 7. f; {Algorithm 20}

5. ft, < f*; {Algorithm 25}

6. fty  f*;

7 f

8. fp, < f7; {Algorithm 28}

9. fp, < f*'; {Algorithm 29}

10. fp, + f7'; {Algorithm 30}

1L yo < fpy - fpo - fpss

12y fi;

13. s ¢ (fto)?"; {Algorithm 29}
14. y3 + (ft,)"; {Algorithm 28}

15, ys + ¥s;

16. yu ¢ (ft,)" - ft;; {Algorithm 28}
17,y i

18. y5 + fly;

19. yo + (ft5)” - fts; {Algorithm 28}
20. ys ¢ 7o

21. to ¢ 2 - ya - ys; {Algorithm 24 for squaring}

~
IS

- b1y -y - Loj

. to ¢ to - ya;

t1 4 (¢} - to)?; {Algorithm 24 for squaring}
L to <ty

1t eyo;

to + t3; {Algorithm 24}

. f 4ty to;

. return f;

[SESECRCICRCRY
BRENEORER

Figure: Final Exponentiation formalized.
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So many are still uncovered...

@ Useful curve endomorphisms (Kobitz curves) for ecmul.
@ GLV decomposition.

© Arithmetics over NonNativeFields.

@ Divisors and line function evaluations.

© Embedding degree and what r-torsion subgroups are.
@ Torus Ty compression.

Distributed Lab Elliptic Curves 37/38 May 16, 2024



Thanks for your attention!
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