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Preliminaries
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Field

Definition

Field K is a set equipped with appropriate addition and multiplication
operations with the corresponding well-defined inverses, where you can
perform the basic arithmetic.

R (real numbers) is a field.

Q (rational numbers) is a field.

C (complex numbers) is a field.

N (natural numbers) is not a field: there is no additive inverse for 2
(−2 is not in N).
Z (integers) is not a field: additive inverse is defined, but the
multiplicative is not (2−1 is not defined).
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Finite Field

Definition

Finite field Fp is a set {0, 1, . . . , p− 1} equipped with basic arithmetic (+
and ×) modulo p.

Example

F5 is a set with elements {0, 1, 2, 3, 4}. Examples of calculations:

1 3 + 4 = 7 = 2 (in F5);

2 3− 4 = −1 = 4 (in F5);

3 3× 4 = 12 = 2 (in F5);

4 3−1 = 2 (since 3 · 2 = 1 in F5);

5 2/3 = 2× 3−1 = 4 in F5.

Typically, p is a large (e.g., 254-bit) prime number.
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Finite Field Illustration

Figure: Illustration of performing addition in Z12 (not really a field, but the rules
are identical besides inversion).
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Elliptic Curve

Definition

Elliptic Curve E (K ) in short Weierstraß form over the field K is a set of
coordinates (x , y) from K such that

y2 = x3 + ax + b, (a, b ∈ K )

together with a “point at infinity” O.

BN254 (or BN256/BN128) is the curve over K = Fp where:

y2 = x3 + 3 (a = 0, b = 3)

p = 0x30644e72e131a029b85045b68181585d97...

...816a916871ca8d3c208c16d87cfd47
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Elliptic Curve on the Figure

Figure: Illustration of various elliptic curves over R (that is, E (R)).
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Actually, these are Elliptic Curves...

But actual elliptic curves look more like that...

Figure: Illustration of an elliptic curve E (F11) : y
2 = x3 − 2x .
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Group structure

Definition

Group (G,⊕) is just a set with defined operation ⊕, which has “nice”
properties (e.g., closure).

Idea: A set of objects is useless unless we have practical relations between
elements. For example, 7 and 13 are integers, but the structure is
worthless without the ability to add/multiply them.

Theorem

(E (Fp),⊕) is a group where operation ⊕ between points P,Q ∈ E (Fp)
means drawing a line between P and Q (or tangent line if P = Q), finding
intersection with E (Fp) and “reflecting around Ox axis” (negating y
component). We denote the group order by q := |E (Fp)|.

Also, we denote [a]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
a times

– scalar multiplication (a ∈ Fq).
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Illustration of addition

Figure: Illustration of operation R = P ⊕ Q
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Effective EC Point Addition
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Classical Approach

Definition

Point P ∈ E (Fp), represented by coordinates (xP , yP) is called the affine
representation of P.

So, how do we add (xR , yR) = (xP , yP)⊕ (xQ , yQ) where (xP , yP) and
(xQ , yQ) are affine representation of points P,Q ∈ E (Fp)?

Algorithm 1: Classical adding P and Q for xP ̸= xQ
1 Calculate the slope λ← (yP − yQ)/(xP − xQ).

2 Set
xR ← λ2 − xP − xQ , yR ← λ(xP − xR)− yP .

Easy, right? What can go wrong?
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Why this is bad?

Let

M – cost of multiplication;

S – cost of squaring;

I – cost of inverse.

(all in Fp)

Algorithm 1: Calculating P ⊕ Q

λ← (yP − yQ)×(xP − xQ)
−1

xR ← λ2 − xP − xQ

yR ← λ×(xP − xR)− yP

Then, calculating the aforementioned formula costs:

2M+ S+ I

Well, just 4 operations... Easy right?

Main Problem!

Typically, I ≈ 80M. So, the effective cost is roughly 80 operations. Too
bad.
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Solution: Projective Coordinates

Definition

We now represent point P ∈ E (Fp) via three coordinates (XP : YP : ZP).
Such form is called projective coordinates. To convert this form to affine
form, we use map (XP : YP : ZP) 7→ (XP/ZP ,YP/ZP), (0 : YP : 0) 7→ O.

Definition

If points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) map to the same affine point,
they are called equivalent. Formally, if exists λ ∈ Fp such that
(X1 : Y1 : Z1) = (λX2 : λY2 : λZ2).

Geometrical interpretation: two points (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
are equivalent if the line through them intersects (0, 0, 0) in “3D space”.
The elliptic curve equation (or rather surface) is then:

Y 2Z = X 3 + aXZ 2 + bZ 3
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Elliptic Curve in Projective Form

Figure: Elliptic Curve Y 2Z = X 3 + 3Z 3 visualized over reals R in 3D space. The
“affine” curve is red, lying on a plane z = 1.
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Equivalent points in projective form

Figure: Points P and P ′ are equivalent (P ∼ P ′) since line PP ′ intersects
O = (0, 0, 0).
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What does it give us?

Now we have three instead of two coordinates... Why is it better?
Because addition now looks like:

Figure: Elliptic Curve addition in projective form.

Although looks much more complicated, it takes only 14M compared to
80M.
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Illustration of adding two points
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General Strategy

1 Convert affine form (XP ,YP) to the projective (XP : YP : 1).

2 Make many additions, doubling, multiplications etc. in projective
form, getting (XR : YR : ZR) at the end.

3 Convert back to affine coordinates:

(XR : YR : ZR) 7→ (XR/ZR ,YR/ZR)

Affine Space

Projective Space
Complex 

Algorithm

Figure: General strategy with EC operations.
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EC Pairing
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Definition

Definition

EC Pairing e : G1 ×G2 → GT is a magical map satisfying the following
property:

e([a]P, [b]Q) = e([ab]P,Q) = e(P, [ab]Q) = e(P,Q)ab.

Pairing for BN254

For BN254, we have:

G1 – “regular” points on the curve E (Fp).

G2 – “good” points on the twisted curve E ′(Fp2) over the field
extension Fp2 (y2 = x3 + b′, b ̸= b′ ∈ Fp2).

GT – multiplicative scalars from extension Fp12 (namely, µr ).
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EC Pairing Illustration

Figure: Pairing illustration. It does not matter what we do first: (a) compute [a]P
and [b]Q and then compute e([a]P, [b]Q) or (b) first calculate e(P,Q) and then
transform it to e(P,Q)ab.

Distributed Lab Elliptic Curves 23 / 38 May 16, 2024 23 / 38



Example: BLS Signature

Suppose we have pairing e : G1 ×G2 → GT (with generators G1,G2,
respectively), and a hash function H, mapping message spaceM to G1.

Definition

BLS Signature consists of the following algorithms:

Gen(·): Key generation. sk
R←− Zq, pk← [sk]G2 ∈ G2.

Sign(sk,m). Signature is σ ← [sk]H(m) ∈ G1.

Verify(pk,m, σ). Check whether e(H(m), pk) = e(σ,G2).

Let us check the correctness:

e(σ,G2) = e([sk]H(m),G2) = e(H(m), [sk]G2) = e(H(m), pk)

Remark: G1 and G2 might be switched: public keys might live instead in
G1 while signatures in G2.
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What it takes to implement?

Figure: Various things under the hood.
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What are field extensions?

These are “like” complex numbers C. Recall that the complex number is
a+ ib where a, b ∈ R and i2 = −1. So that:

(a+ ib)(c + id) = ac + (ad)i + (bc)i + (bd)i2

= (ac − bd) + (ad + bc)i

Field extension Fp2 is a+ ib where a, b ∈ Fp and i2 = −1. The same
structure, essentially :)
Problems happen with Fp6 and Fp12 though since the intuition with
complex numbers break...
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Polynomials

Definition

Polynomial K [X ] is an expression

p(X ) = c0 + c1X + c2X
2 + · · ·+ cnX

n, ci ∈ K

Definition

Polynomial p ∈ K [X ] is said to be irreducible if there are two non-constant
polynomials q, r ∈ K [X ] such that p = qr .
Example: X 2 + 4 ∈ R[X ] is irreducible.

Definition

Quotient group K [X ]/⟨p⟩ (which is a field) over irreducible polynomial p
is polynomials from K [X ] modulo p.
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Examples

Arithmetic in quotient group

Suppose K = R and p(X ) = X 2 + 1 – irreducible over R. Then, example
elements are 1 + 2X , 2 + 3X ∈ R[X ]/⟨X 2 + 1⟩. You can do the regular
arithmetic with them:

Addition: (1 + 2X ) + (2 + 3X ) = 3 + 5X

Multiplication: (1 + 2X )(2 + 3X ) = 2 + 7X + 6X 2. But, we need to
reduce mod (X 2 + 1). So notice that

6X 2 + 7X + 2 = 6(X 2 + 1) + (−4 + 7X )︸ ︷︷ ︸
result

Division (except for by 0 + 0X ) and subtraction is also allowed.
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Analogy!

In fact, R[X ]/(X 2 + 1) is the same structure as complex numbers!
(Formally, they are isomorphic R[X ]/⟨X 2 + 1⟩ ∼= C). For example, when
we multiplied (1 + 2X )(2 + 3X ), we got −4 + 7X . But...

(1 + 2i)(2 + 3i) = 2 + 7i + 6i2︸︷︷︸
=−6

= −4 + 7i

Notice, that R[X ]/(X 2 + 9) would have a similar structure and is also
isomorphic to C. Thus, the choice of p(X ) is not unique.
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Tower of Extensions

We are ready to define Fp12 . So,

Tower of Extensions

To define Fp12 , we use the following objects with
β = −1 ∈ Fp, ξ = 9 + u ∈ Fp2 :

Fp2 = Fp[u]/⟨u2 − β⟩
Fp6 = Fp2 [v ]/⟨v3 − ξ⟩
Fp12 = Fp6 [w ]/⟨w2 − v⟩
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Visualization (sort of)

Figure: Tower of extensions visualized
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Formulating more simply

More simply:

Fp2 is a number a+ bu where a, b ∈ Fp and u2 = −1.
Fp6 is a number a+ bv + cv2 where a, b, c ∈ Fp2 and v3 = 9 + u.

Fp12 is a number a+ bw where a, b ∈ Fp6 and w2 = v .

Intuition

You should regard an element from Fpk as a regular number, but
composed of k scalars from Fp in a “special” way.
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Curves used

As mentioned, G1 is a regular curve y2 = x3 + 3.
However, G2 is a curve (called twisted curve):

y2 = x3 +
3

9 + u
, where x , y ∈ Fp2

So the element in G2 is described using four scalars from Fp:

(a+ bu, c + du), a, b, c , d ∈ Fp

To conclude:

G1 is a group of points on the curve y2 = x3 + 3 over Fp.

G2 is a group of points on the curve y2 = x3 + 3
9+u over the field

extension Fp2 .

GT “=” F⋆
p12 is a multiplicative subgroup of scalars from Fp12 .
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What it takes to implement?

Calculating pairing e(P ,Q)

1 x ← MillerLoop(P,Q) ∈ Fp12 .

2 f ← FinalExp(x) = x (p
12−1)/q ∈ Fp12 .

3 return f .

So, one needs to:

1 Implement MillerLoop that outputs the scalar f in Fp12 , also called a
Tate pairing.

2 Implement final exponentiation (FinalExp) that raises f to the power
of (p12 − 1)/q – this ensures there are no equivalence classes in the
output (called Reduced Tate pairing or simply ate pairing).

Again, understanding the construction requires ton of theory (in particular,
from abstract geometry), but the algorithms are quite concrete.
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Some excerpts from papers...

Figure: Miller Loop algorithm formalized.
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Some excerpts from papers...

Figure: Final Exponentiation formalized.
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So many are still uncovered...

1 Useful curve endomorphisms (Kobitz curves) for ecmul.

2 GLV decomposition.

3 Arithmetics over NonNativeFields.

4 Divisors and line function evaluations.

5 Embedding degree and what r -torsion subgroups are.

6 Torus T2 compression.

7 ...
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Thanks for your attention!
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