
Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

N eRO: BitVM2-Based Optimistic
Verifiable Computation on Bitcoin
October 31, 2024

Distributed Lab
� distributedlab.com/
§ github.com/distributed-lab/nero

https://distributedlab.com/
https://github.com/distributed-lab/nero


Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Plan
1 Advanced Bitcoin Script

What is Bitcoin Script? Basic Notation

Non-Native Verifications

Demystifying Math behind BitVM Groth16

2 BitVM2

Shard Splitting

Protocol

3 BitVM2 Pitfalls

Splitting Mechanism

BitVM-friendliness



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Advanced Bitcoin Script



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

What Bitcoin Script is for?

Recall
Bitcoin Script is a scripting language used in Bitcoin to specify
conditions on how the UTXO can be spent.

Example
The standard pay-to-pubkey-hash looks as follows.
scriptPubKey:

Script:
OP_DUP OP_HASH160 ⟨H(pk)⟩
OP_EQUALVERIFY OP_CHECKSIG

As a scriptSig, the user provides
{
⟨σ⟩ ⟨pk⟩

}
.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

How the Bitcoin Script is executed

Consider the pay-to-pubkey-hash’s scriptSig ∥ scriptPubKey:

Script: ⟨σ⟩ ⟨pk′⟩ OP_DUP OP_HASH160 ⟨H(pk)⟩ OP_EQUALVERIFY OP_CHECKSIG

Script: ⟨σ⟩ ⟨pk′⟩ ⟨pk′⟩ OP_HASH160 ⟨H(pk)⟩ OP_EQUALVERIFY OP_CHECKSIG

Script: ⟨σ⟩ ⟨pk′⟩ ⟨H(pk′)⟩ ⟨H(pk)⟩ OP_EQUALVERIFY OP_CHECKSIG

Script: ⟨σ⟩ ⟨pk′⟩ OP_CHECKSIG

Script: ⟨1⟩

Note
One can spend the UTXO iff the output is OP_1.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Can we do more?

So typically, Bitcoin Script allows writing only basic smart contracts
using native OP_CODEs:

• Hash Preimage Verification.

• Basic Signatures (ECDSA for tx data, Schnorr for Taproot).

• Threshold/Multisignatures.

• Combination of those.

Question
Can we implement some non-native verifications? For example,
zk-SNARKs (Groth16, fflonk), zk-STARKs, BLS Signatures?



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Can we do more?
✓ Groth16 is already implemented.

✓ fflonk is already implemented.

✗ zk-STARK cannot be currently implemented (requires OP_CAT for
Fiat-Shamir transformation and Merkle Trees). Yet, assuming
OP_CAT, the Circle STARK is implemented!

✓ Any discrete-log-based protocol that does not involve hashing
(typically requiring concatenation) can be implemented:
Σ-protocols, Bulletproofs, BLS Signatures.

Note
In other words, currently, it is theoretically possible to build a
Groth16 zk-SNARK verification of proof π in a form

Script: ⟨π⟩ ⟨public statement⟩ OP_CHECKGROTH16

https://eprint.iacr.org/2024/278


Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Demystifying Math behind BitVM Groth16

✓ Arithmetic is allowed only over u32 integers.

✓ From arithmetic, one only1 has OP_ADD, OP_SUB, OP_NEGATE,
OP_ABS, OP_LESSTHAN, OP_GREATERTHAN, OP_BOOLAND,
OP_BOOLOR.

✓ Flow control is very limited: only OP_IFs/OP_ELSEs are allowed.
No for/while loops, but almost full control of compile-time stack
movement.

Question
(Almost) any zk-SNARK requires working over large finite fields
(with a bit-size of 254). How do we even push a 254-bit big integer?

1With dropping variations such as OP_1ADD and such.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Representing large integers
Recall
We can represent any integer x in arbitrary base b:

x =
n−1∑
j=0

xjb
j , 0 ≤ xj < b

Numbers x0, x1, . . . , xn−1 are called limbs, where n is the limb-size
of x in base b.

Idea #1
If b is small enough, we can publish individual limbs x0, . . . , xn−1
that constitute the whole number x .

Idea #2
Since we want to minimize the number of limbs, we take the largest
b possible (with b = 2t for convenience). Thus, we set b := 230.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Representing large integers
Example
Consider the following 254-bit integer:

x = (0xbe48fffd2a6f534dc

5b6a6901840fc0fb65827e6

efd22a8063cded681f5f7b2)

To add this integer to the stack, one uses the following script:

Script:

OP_PUSHBYTES_2 ⟨e40b⟩ OP_PUSHBYTES_4 ⟨a9f4ff23⟩
OP_PUSHBYTES_4 ⟨c54d532f⟩ OP_PUSHBYTES_4 ⟨06a4a92d⟩
OP_PUSHBYTES_4 ⟨fbc00f04⟩ OP_PUSHBYTES_4 ⟨9b9f6019⟩
OP_PUSHBYTES_4 ⟨802ad22f⟩ OP_PUSHBYTES_4 ⟨5a7bf318⟩
OP_PUSHBYTES_4 ⟨b2f7f501⟩

Note: One needs 9 limbs to represent a 254-bit integer.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BigInt Addition

Problem
Given two 254-bit integers x and y , find z := x + y , assuming
overflowing does not occur.

Solution. We have two representations:

x =
8∑

j=0

xj × 230j , y =
8∑

j=0

yj × 230j

Idea: add limb by limb, starting from the least significant one.

1. On step i , calculate t ← xi + yi + carry (start with zero carry).

2. If t < 230, set zi ← t, carry← 0.

3. If t ≥ 230, set zi ← t − 230, carry← 1.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BitInt Addition: Bitcoin Script



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BigInt Multiplication
Problem
Given two 254-bit integers x and y , find 508-bit z := x × y .

Algorithm 1: Double-and-add method for integer multiplication

Input : x , y — two integers being multiplied
Output : Result of the multiplication x × y

1 Decompose y to the binary form: (y0, y1, . . . , yN−1)2
2 r ← 0
3 t ← x
4 for i ∈ {0, . . . ,N − 1} do
5 if yi = 1 then
6 r ← r + t
7 end
8 t ← 2× t

9 end
Return : Integer r



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Other Primitives to Implement. . .

Figure: Primitives to implement



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

What is the problem then?
If Groth16 is already implemented, what is the reason we are here?

The thing is. . . Currently, fflonk verification script is 875MB in size,
while Groth16 takes 1.3GB (after our and Alpen Labs optimization
using w -window multiplication). . . See this post for more details.

The current Bitcoin mainnet restriction is roughly 4MB (while the
practical limitation is about 200-400kB). What to do?

Figure: Our paper on optimizing big integer multiplication

https://eprint.iacr.org/2024/1236
https://x.com/fiamma_chain/status/1830824142826086608?s=46


Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BitVM2



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Core Idea
Suppose our script is represented as a function f . Our input
(ScriptSig/witness) is x , while the output is y = f (x).

Note
Although BitVM2’s primary goal is implementing the Groth16 verifier
(so f is the ZKP verification function), we believe the concept is
easily generalizable to any f .

Idea #1
We do not need to compute y from x . Instead, the operator
publishes x , y (f is publically known as the part of the protocol),
and if y ̸= f (x), anyone can punish the operator.

?!
However, doesn’t check y ̸= f (x) involve calculating f as a whole?



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Shards Splitting
Idea #2
We can ease the challenger’s burden by splitting the function f
into subchunks. In other words, suppose f = fn ◦ fn−1 ◦ · · · ◦ f1.
Then, the operator can calculate the intermediate states:

z1 = f1(z0), z2 = f2(z1), z3 = f3(z2), . . . , zn = fn(zn−1)

Where z0 is x and zn must be y .

Idea #3

If y ̸= f (x), that means that for some shard, zj ̸= fj(zj−1).

Why this is useful?
✓ Disproving zj ̸= fj(zj−1) is much easier than y ̸= f (x).

✓ For stack-based languages, f1 ◦ f2 = f2 ∥ f1.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Shards Splitting: Example

Example
Consider a fairly simple program f :

f (a, b) = 25a2b2(a+ b)2

Its implementation (assuming OP_MUL is implemented):

Script:
⟨a⟩ ⟨b⟩ OP_2DUP OP_ADD OP_MUL OP_MUL OP_DUP OP_DUP

OP_ADD OP_DUP OP_ADD OP_ADD OP_DUP OP_MUL

Let us split the function into three shards f1, f2, and f3:

f1(x , y) = xy(x + y), f2(z) = 5z , f3(w) = w2



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Shards Splitting: Example (cont.)

Example
This way, it is fairly easy to see that f (a, b) = f3 ◦ f2 ◦ f1(a, b). In
turn, in Bitcoin script we can represent f as f1 ∥ f2 ∥ f3:

Script:

⟨a⟩ ⟨b⟩ OP_2DUP OP_ADD OP_MUL OP_MUL // xy(x + y)

OP_DUP OP_DUP OP_ADD OP_DUP OP_ADD OP_ADD // 5z

OP_DUP OP_MUL // w2

Suppose a = 2, b = 3. Then, intermediate states are:

z0 = (2, 3) // Script input
z1 = f1(z0) = 2× 3× (2 + 3) = 30
z2 = f2(z1) = 5× 30 = 150

z3 = f3(z2) = 1502 = 22500 // Script output



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Naive Version
1. Operator splits the program f into shards f1, . . . , fn with

intermediate states z0, . . . , zn and commitments σ0, . . . , σn.

2. Operator creates an Assert Transaction that can be spent in
n + 1 different ways (taptree):
((j + 1)th) DisproveScript[j]: Challenger shows zj+1 ̸= fj(zj).
((n + 1)th) Payout: LockTimeVerify + CheckSig.

Figure: BitVM2 Naive Version from the original paper



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

“Super-Optimistic” Version

Operator creates a Claim Tx with commitments, and Challenger
publishes the Challenge Tx in case of suspicion. Rest is the same.

Figure: BitVM2 Optimized Version from the original paper



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BitVM2 Pitfalls



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Main Problem
How do we implement the DisproveScript?

Script:

⟨zj−1⟩ OP_DUP ⟨σj−1⟩ ⟨pkj−1⟩ OP_WINTERNITZVERIFY
⟨zj⟩ OP_DUP ⟨σj⟩ ⟨pkj⟩ OP_WINTERNITZVERIFY
⟨fj⟩ OP_EQUAL OP_NOT

pk’s and z ’s are stored in the scriptPubKey, while σ’s (Winternitz
signatures) are provided by the challenger in the witness.

Main Problem
1. Each zj is a collection of u32 elements.

2. This collection cannot be aggregated (e.g., H(zj ,1 ∥ zj ,2 ∥ . . . )).

3. Thus, every stack element must be signed separately.

4. Signing each element costs roughly 1kB (!!!)



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Splitting
Now, how do we actually implement splitting?

Idea #1
Fix shard size L. Take the first L opcodes. If not all OP_IFs are
closed, add opcodes till they are closed. Repeat until the end.

Problem: Although we might make all shards of size ≈ L, the
intermediate state sizes can still be large.

Example
u32 multiplication costs roughly 4.5kB in Bitcoin Script. Splitting:

Shard number Shard Size # Elements in state Estimated Cost
1 623B 37 37kB
2 640B 32 32kB
3 640B 27 27kB
4 640B 22 22kB
5 640B 17 17kB
6 640B 12 12kB
7 627B 3 3kB



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Ideology

Core Idea
1. Making the taptree larger does not cost almost anything.

Therefore, we might make shards as small as we want them to be.

2. We should care not only for making shards small but, more
importantly, intermediate state sizes smaller.

3. ... which is impossible to do automatically; only manually.

Definition
A function f is called BitVM-friendly if:
• It can be split into the shards f1, . . . , fn of relatively small size.

• The intermediate states {zj}0≤j≤n contain a small number of
elements, making the commitment cheap enough.



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Square Fibonacci Sequence

Let us consider one non-trivial BitVM-friendly script.

Problem Statement
Fix integer q and two integers x0, x1. Define the sequence

xj+2 = x2
j+1 + x2

j (mod q)

Define f (a, b) to be x1000 with x0 = a, x1 = b.

Observe that having (xj , xj+1), it is easy to get (xj+1, xj+2):

Script: OP_DUP OP_SQUARE ⟨2⟩ OP_ROLL OP_SQUARE OP_ADD



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Square Fibonacci Sequence (cont.)

Total script:

Script:

repeat 1000 times
OP_DUP OP_SQUARE ⟨2⟩ OP_ROLL OP_SQUARE OP_ADD

end
OP_SWAP OP_DROP

Is it BitVM-friendly? Yes! Make 1001 shards:

• Shards 1 . . . 1000:{
OP_DUP OP_SQUARE ⟨2⟩ OP_ROLL OP_SQUARE OP_ADD

}
.

• Shard 1001:
{
OP_SWAP OP_DROP

}
Intermediate State Size: 2 integers.

Question: What if we wanted to compute the 1000000th element?



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Big Integer Multiplication

Algorithm 2: Double-and-add method for integer multiplication

Input : x , y — two integers being multiplied
Output : Result of the multiplication x × y

1 Decompose y to the binary form: (y0, y1, . . . , kN−1)2
2 r ← 0
3 t ← x
4 for i ∈ {0, . . . ,N − 1} do
5 if yi = 1 then
6 r ← r + t
7 end
8 t ← 2× t

9 end
Return : Integer r

Question: Suppose we use the automatic splitting. Would that be
BitVM-friendly?



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

Big Integer Multiplication (cont.)

Suppose for concreteness that we multiply two 254-bit integers.

At each for-loop step, we need to store the binary decomposition of
one integer, which consists of 254 elements.

We need to sign (commit to) each one. Meaning we have 254kB for
any shard at least. Although the multiplication algorithm itself costs
roughly 100kB.

How this can be fixed?



Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls

BitVM-friendly Big Integer Multiplication

Algorithm 3: BitVM-friendly double-and-add method

Input : x , y — two u32 integers being multiplied, N — bitsize of y .
Output : Result of the multiplication x × y

1 r ← 0
2 t ← x
3 for i ∈ {0, . . . ,N} do
4 Start the shard i
5 Decompose y into the binary form: y = (y0, . . . , yN−1)2
6 if yi = 1 then
7 r ← r + t
8 end
9 t ← 2× t

10 Recover y back to the original form: y ←
∑N−1

i=0 yi2i .
11 End shard i

12 end
Return : Integer r



Thank you for your attention

♥

� distributedlab.com
§ github.com/distributed-lab/nero

https://distributedlab.com/
https://github.com/distributed-lab/nero

	Advanced Bitcoin Script
	What is Bitcoin Script? Basic Notation
	Non-Native Verifications
	Demystifying Math behind BitVM Groth16

	BitVM2
	Shard Splitting
	Protocol

	BitVM2 Pitfalls
	Splitting Mechanism
	BitVM-friendliness


