Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls
0000000000000 0000000 0000000000

NeRO: BitVM2-Based Optimistic
Verifiable Computation on Bitcoin

October 31, 2024

Distributed Lab

PN

& distributedlab.com/

Q) github.com/distributed-lab/nero oo N
L%

https://distributedlab.com/
https://github.com/distributed-lab/nero

Plan
Advanced Bitcoin Script
m What is Bitcoin Script? Basic Notation
m Non-Native Verifications

m Demystifying Math behind BitVM Groth16

BitVM2
m Shard Splitting
m Protocol
BitVM2 Pitfalls
m Splitting Mechanism
m BitVM-friendliness

Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls
©000000000000 0000000 0000000000

Advanced Bitcoin Script

Advanced Bitcoin Script

[
o]

What Bitcoin Script is for?

Recall

Bitcoin Script is a scripting language used in Bitcoin to specify
conditions on how the UTXO can be spent.

Example

The standard pay-to-pubkey-hash looks as follows.
scriptPubKey:

OP_DUP OP_HASH160 (H(pk))

Script:
OP_EQUALVERIFY OP_CHECKSIG

As a scriptSig, the user provides { (o) (pk) } .

Advanced Bitcoin Script
oe

How the Bitcoin Script is executed

Consider the pay-to-pubkey-hash's scriptSig || scriptPubKey:

Script: (o) (pk’) OP_DUP OP_HASH160 (H(pk)) OP_EQUALVERIFY OP_CHECKSIG
Script: (o) (pk’) (pk’) OP_HASH160 (H(pk)) OP_EQUALVERIFY OP_CHECKSIG
Script: (o) (pk’) (H(pk’)) (H(pk)) OP_EQUALVERIFY OP_CHECKSIG
Script: (o) (pk’) OP_CHECKSIG

Script: (1)

One can spend the UTXO iff the output is 0P_1.

Advanced Bitcoin Script
0

Can we do more?

So typically, Bitcoin Script allows writing only basic smart contracts
using native OP_CODEs:

e Hash Preimage Verification.
e Basic Signatures (ECDSA for tx data, Schnorr for Taproot).
e Threshold/Multisignatures.

e Combination of those.

Question

Can we implement some non-native verifications? For example,
zk-SNARKSs (Groth16, fflonk), zk-STARKSs, BLS Signatures?

Advanced Bitcoin Script
°

Can we do more?

v Groth16 is already implemented.
v fflonk is already implemented.

X zk-STARK cannot be currently implemented (requires OP_CAT for
Fiat-Shamir transformation and Merkle Trees). Yet, assuming
0OP_CAT, the Circle STARK is implemented!

v Any discrete-log-based protocol that does not involve hashing
(typically requiring concatenation) can be implemented:
3 -protocols, Bulletproofs, BLS Signatures.

In other words, currently, it is theoretically possible to build a
Groth16 zk-SNARK verification of proof m in a form

Script: () (public statement) OP_CHECKGROTH16

https://eprint.iacr.org/2024/278

Advanced Bitcoin Script
©0000000

Demystifying Math behind BitVM Groth16

v Arithmetic is allowed only over u32 integers.

v From arithmetic, one only! has OP_ADD, OP_SUB, OP_NEGATE,
OP_ABS, OP_LESSTHAN, OP_GREATERTHAN, OP_BOOLAND,
OP_BOOLOR.

v Flow control is very limited: only OP_IFs/OP_ELSEs are allowed.
No for/while loops, but almost full control of compile-time stack
movement.

Question

(Almost) any zk-SNARK requires working over large finite fields
(with a bit-size of 254). How do we even push a 254-bit big integer?

1

With droeeing variations such as OP_1ADD and such.

Advanced Bitcoin Script

0O@000000

Representing large integers
Recall
We can represent any integer x in arbitrary base b:

n—1
X:Zijj, 0<x;<b
j=0

Numbers xg, x1, ..., x,—1 are called limbs, where n is the limb-size
of x in base b.

Idea #1

If b is small enough, we can publish individual limbs xg, ..., x,_1
that constitute the whole number x.

Idea #2

Since we want to minimize the number of limbs, we take the largest
b possible (with b = 2t for convenience). Thus, we set b := 230

Advanced Bitcoin Script
00®00000

Representing large integers

Consider the following 254-bit integer:

x = (Oxbed48fffd2a6f534dc
5b6a6901840£fc0fb65827e6
efd22a8063cded681f5£7b2)

To add this integer to the stack, one uses the following script:

OP_PUSHBYTES_2 (e40b) OP_PUSHBYTES_4 (a9f4££23)
OP_PUSHBYTES_4 (c54d532f) OP_PUSHBYTES_4 (06a4a92d)

Script: OP_PUSHBYTES_4 (fbc00f04) OP_PUSHBYTES_4 (9b9£6019)
OP_PUSHBYTES_4 (802ad22f) OP_PUSHBYTES_4 (5a7bf318)
OP_PUSHBYTES_4 (b2£7£501)

Note: One needs 9 limbs to represent a 254-bit integer.

Advanced Bitcoin Script
000®0000

Bigint Addition

Problem

Given two 254-bit integers x and y, find z := x + y, assuming
overflowing does not occur.

Solution. We have two representations:
8 8
30/ 30)
X:ZXJ'X2J, y:Zij2f
j=0 Jj=0

Idea: add limb by limb, starting from the least significant one.
1. On step i, calculate t < x; + y; + carry (start with zero carry).
2. If t < 230 set zj + t, carry « 0.

3. 1f t > 230 set zj +— t — 230, carry < 1.

Advanced Bitcoin Script
00008000

BitInt Addition: Bitcoin Script

Algorithm 7: Adding two integers assuming with no overflow

Input :Two integers on the stack: { (ze—1) ... (o) (ye—1) ... {vo) }
Output : Result of addition 2 =z + y in a form {(z,_1) ... (20) }
1 {OP_ZIP} ; /% Convert current stack {(zg,l) oo A{mo) (ye—1) --- (y()}} to the form
{{@e-1) (we1) - (w0) (o) } */
{(,3)} H /* Push base to the stack */
3 { OP_LIMB_ADD_CARRY OP_TOALTSTACK }
4 for _€{0,...,£—-3}do
/* At this point, stack looks as {(zn) (yn) (B) (c}} . We need to add carry c

N

and call OP_LIMB_ADD_CARRY */
5 | {0P_ROT}
6 | {op_ADD}
7 { oP_swaP }
8 { OP_LIMB_ADD_CARRY OP_TOALTSTACK }
9 end
/* At this point, again, stack looks as {(zn) (yn) (B) (c)} . We need to drop the
base, add carry, and conduct addition, assuming overflowing does not occur */
10 { OP_NIP OP_ADD, OP_ADD }
/* Return all limbs to the main stack */

11 for _ €{0,...,£—2} do
12 | {OP_FROMALTSTACK }
13 end

e

Advanced Bitcoin Script
00000800

Bigint Multiplication

Given two 254-bit integers x and y, find 508-bit z := x x y.

Algorithm 1: Double-and-add method for integer multiplication

Input :x,y — two integers being multiplied
Output : Result of the multiplication x x y

1 Decompose y to the binary form: (yo,y1,...,¥Yn—1)2
2 r<0

3 t< X

4 forie{0,...,N—1} do

5 if y; =1 then

6 ‘ r<r+t

7 end

8 t+2xt

9 end

Return :lInteger r

Advanced Bitcoin Script
00000080

Other Primitives to Implement. ..

Protocols
e(P,Q)

E[F,) EFx)

Figure: Primitives to implement

e

Advanced Bitcoin Script
00000008

What is the problem then?
If Groth16 is already implemented, what is the reason we are here?

The thing is. .. Currently, fflonk verification script is 875MB in size,
while Groth16 takes 1.3GB (after our and Alpen Labs optimization
using w-window multiplication). .. See this post for more details.

The current Bitcoin mainnet restriction is roughly 4MB (while the
practical limitation is about 200-400kB). What to do?

Optimizing Big Integer Multiplication on Bitcoin:
Introducing w-windowed Approach

Dmytro Zakharov!, Oleksandr Kurbatov!, Manish Bista? and Belove Bist?

! Distributed Lab dmytro.zakharov@distributedlab.com, ok@distributedlab.com
2 Alpen Labs manish@alpenlabs.io, belove@alpenlabs.io

Figure: Our paper on optimizing big integer multiplication

https://eprint.iacr.org/2024/1236
https://x.com/fiamma_chain/status/1830824142826086608?s=46

Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls
0000000000000 ©000000 0000000000

BitVM2

BitVM2
€000

Core ldea
Suppose our script is represented as a function f. Our input
(ScriptSig/witness) is x, while the output is y = f(x).
Note

Although BitVM2's primary goal is implementing the Groth16 verifier
(so f is the ZKP verification function), we believe the concept is
easily generalizable to any f.

Idea #1

We do not need to compute y from x. Instead, the operator
publishes x, y (f is publically known as the part of the protocol),
and if y # f(x), anyone can punish the operator.

)

However, doesn't check y # f(x) involve calculating f as a whole?

BitVM2
0e00

Shards Splitting

Idea #2

We can ease the challenger’s burden by splitting the function f
into subchunks. In other words, suppose f = f,of, 10---0f.
Then, the operator can calculate the intermediate states:

71 = (=), 22 = h(z1), z3 = B(2),..., zn = fo(za-1)

Where zg is x and z, must be y.

Idea #3
If y # f(x), that means that for some shard, z; # fj(zj_1).

Why this is useful?
v Disproving z; # fj(zj_1) is much easier than y # f(x).

v For stack-based languages, o fh = f | f;.

BitVM2
foJe] Yo)

Shards Splitting: Example

Consider a fairly simple program f:
f(a, b) = 25a°b*(a + b)?
Its implementation (assuming OP_MUL is implemented):

(a) (b) OP_2DUP OP_ADD OP_MUL OP_MUL OP_DUP OP_DUP

Script:
P OP_ADD OP_DUP OP_ADD OP_ADD OP_DUP OP_MUL

Let us split the function into three shards f1, f>, and f3:

A(xy) =xy(x+y), h(z)=5z, K(w)=w?

BitVM2
oooe

Shards Splitting: Example (cont.)

This way, it is fairly easy to see that f(a, b) = f30 0 fi(a, b). In
turn, in Bitcoin script we can represent f as f; || f || f3:

(a) (b) OP_2DUP OP_ADD OP_MUL OP_MUL /] xy(x+y)
Script: OP_DUP OP_DUP OP_ADD OP_DUP OP_ADD OP_ADD // 5z
OP_DUP OP_MUL /] w?

Suppose a = 2, b = 3. Then, intermediate states are:

zp = (2, // Script input
z1 = fi(z
z = f(z
73 = f3(z

5 x 30 = 150
= 1502 = 22500 // Script output

3)
0) =2x3x%x(2+3)=30
1)
2)

BitVM2
0

Naive Version

1. Operator splits the program f into shards fi,...,f, with
intermediate states zg, ..., z, and commitments oq,...,0p.

2. Operator creates an Assert Transaction that can be spent in
n+ 1 different ways (taptree):
((j + 1)*) DisproveScript[j1: Challenger shows z;,1 # fi(z).
((n+1)™) Payout: LockTimeVerify + CheckSig.

CheckCovenant Acheck Payout
commitments for 2o, ..., 2k
: In Out
CheckCovenant A
Operator A RelTimelock(A 1)
Assert = dB Operator

AssertScript

k—————— > dB

Disprove

(6 |—>Bum

i
‘r Challenger
|

CheckCovenant A

(check commitments for zi_1, 2 SIGHASH.SINGLE
Az # fi(zi1)vae V)

Figure: BitVM2 Naive Version from the original paper

BitVM2
oe

“Super-Optimistic”’ Version

Operator creates a Claim Tx with commitments, and Challenger
publishes the Challenge Tx in case of suspicion. Rest is the same.

PayoutOptimistic

In Out
CheckCovenant A Rel Timelock(A) aB Operator
Operator 0B
Assert
In Out Payout
— o In | Out
. S aB Operator
‘é' 7;
2 Disprove

Crowdfunding = cB

In Out | ,(,)u,t,,_
,,,,,,,,,,,, DisproveScript; I 1
B
0B | b - | Lt T B
,,,,,,,,,,,,, i
Operator |
AL

STGHASH STNGLE | ANYONECANPAY

| Challenger
1

SICHASH_SINGLE

Figure: BitVM2 Optimized Version from the original paper

Advanced Bitcoin Script BitVM2 BitVM2 Pitfalls
0000000000000 0000000 9000000000

BitVM?2 Pitfalls

in Script

BitVM2 Pitfalls
0®00000000

Main Problem

How do we implement the DisproveScript?

(zj—1) OP_DUP (0j_1) (pk;_;) OP_WINTERNITZVERIFY
Script: (z;) OP_DUP () (pk;) OP_WINTERNITZVERIFY
(f;) OP_EQUAL OP_NOT

pk's and z's are stored in the scriptPubKey, while o's (Winternitz
signatures) are provided by the challenger in the witness.

1. Each z; is a collection of u32 elements.
2. This collection cannot be aggregated (e.g., H(zj1 || zj2 || --.)).
3. Thus, every stack element must be signed separately.

4. Signing each element costs roughly 1kB (!!!)

BitVM2 Pitfalls

[}
[]

Splitting
Now, how do we actually implement splitting?

Idea #1

Fix shard size L. Take the first L opcodes. If not all OP_IFs are
closed, add opcodes till they are closed. Repeat until the end.

Problem: Although we might make all shards of size =~ L, the
intermediate state sizes can still be large.

Example

u32 multiplication costs roughly 4.5kB in Bitcoin Script. Splitting:
Shard number Shard Size # Elements in state Estimated Cost

1 623B 37 37kB
2 640B 32 32kB
3 640B 27 27kB
4 640B 22 22kB
5 640B 17 17kB
6 640B 12 12kB
7 627B S 3kB

BitVM2 Pitfalls
©000000

Ideology

1. Making the taptree larger does not cost almost anything.
Therefore, we might make shards as small as we want them to be.

2. We should care not only for making shards small but, more
importantly, intermediate state sizes smaller.

3. ... which is impossible to do automatically; only manually.

A function f is called BitVM-friendly if:
e It can be split into the shards fi,...,f, of relatively small size.

e The intermediate states {z;}o<j<, contain a small number of
elements, making the commitment cheap enough.

BitVM2 Pitfalls
0®00000

Square Fibonacci Sequence

Let us consider one non-trivial BitVM-friendly script.

Problem Statement

Fix integer g and two integers xg, x1. Define the sequence
2 2
Xj+2 = Xj11 + X7 (mod q)
Define f(a, b) to be xj000 With xg = a,x; = b.
Observe that having (xj, xj;1), it is easy to get (Xjt1,Xj+2):

Script: OP_DUP OP_SQUARE (2) OP_ROLL OP_SQUARE OP_ADD

BitVM2 Pitfalls
00®0000

Square Fibonacci Sequence (cont.)

Total script:

repeat 1000 times

OP_DUP OP_SQUARE (2) OP_ROLL OP_SQUARE OP_ADD
end
OP_SWAP OP_DROP

Script:

Is it BitVM-friendly? Yes! Make 1001 shards:

e Shards 1...1000:
{ OP_DUP OP_SQUARE (2) OP_ROLL OP_SQUARE OP_ADD } .

e Shard 1001: {0OP_SWAP OP_DROP }
Intermediate State Size: 2 integers.

Question: What if we wanted to compute the 1000000t element?

BitVM2 Pitfalls
000®000

Big Integer Multiplication

Algorithm 2: Double-and-add method for integer multiplication

Input :x,y — two integers being multiplied
Output : Result of the multiplication x x y
Decompose y to the binary form: (yo,y1, ..., kn—1)2
r<20
t< x
for i€ {0,....N—1} do

if y; =1 then

| rer+t

end

t—2xt
end
Return :Integer r

© ® N o u A W N =

Question: Suppose we use the automatic splitting. Would that be
BitVM-friendly?

BitVM2 Pitfalls
0000®00

Big Integer Multiplication (cont.)

Suppose for concreteness that we multiply two 254-bit integers.

At each for-loop step, we need to store the binary decomposition of
one integer, which consists of 254 elements.

We need to sign (commit to) each one. Meaning we have 254kB for
any shard at least. Although the multiplication algorithm itself costs
roughly 100kB.

How this can be fixed?

BitVM2 Pitfalls
0000080

BitVM-friendly Big Integer Multiplication

Algorithm 3: BitVM-friendly double-and-add method

Input :x,y — two u32 integers being multiplied, N — bitsize of y.
Output : Result of the multiplication x x y
r<20
t < X
for i€ {0,...,N} do
Start the shard /
Decompose y into the binary form: y = (yo,...,yn—1)2
if y; =1 then
| rer+t
end
t—2xt

© O N OO O B W N =

=
o

Recover y back to the original form: y « Z,{VZBI yi2!
1 End shard i
12 end

Return :Integer r

Thank you for your attention

v

AR

& distributedlab.com

A\ /4

) github.com/distributed-lab/nero

TN
[
3

https://distributedlab.com/
https://github.com/distributed-lab/nero

	Advanced Bitcoin Script
	What is Bitcoin Script? Basic Notation
	Non-Native Verifications
	Demystifying Math behind BitVM Groth16

	BitVM2
	Shard Splitting
	Protocol

	BitVM2 Pitfalls
	Splitting Mechanism
	BitVM-friendliness

